Журналов:     Статей:        

Андрология и генитальная хирургия. 2022; 23: 48-53

Актуальные и перспективные методы лечения идиопатического мужского бесплодия

Ефремов Е. А., Касатонова Е. В.

https://doi.org/10.17650/2070-9781-2022-23-3-48-53

Аннотация

Для значительного числа пар во всем мире мужское бесплодие является серьезным испытанием. Это непростой клинический вызов и для андролога – до 50 % случаев мужского бесплодия не имеют идентифицируемой этиологии, и в арсенале врачей отсутствуют эффективные, основанные на доказательствах, методы лечения. Длительное время для эмпирической терапии использовались антиоксиданты, но до сих пор нет убедительных данных, что фертильность и частота живорождений действительно улучшаются после приема антиоксидантных добавок. Данный обзор является попыткой обобщить текущие и перспективные методы терапии идиопатического бесплодия у мужчин. Особое внимание уделено регуляторным пептидам как многообещающим средствам для улучшения мужской фертильности.

Список литературы

1. WHO Manual for the standardized investigation, diagnosis and management of the infertile male. Cambridge: Cambridge University Press, 2000.

2. Minhas S., Bettocchi C., Boeri L. et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur Urol 2021;80(5):603–20. DOI: 10.1016/j.eururo.2021.08.014

3. Martins da Silva S.J., Brown S.G., Sutton K. et al. Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem. Hum Reprod 2017;32(5):974–84. DOI: 10.1093/humrep/dex055

4. Nixon B., Bromfield E.G. New horizons in male subfertility and infertility. In: Male and sperm factors that maximize IVF success. Ed. by R.J. Aitken, D. Mortimer, G. Kovacs. Cambridge University Press, 2020. P. 15–27. DOI: 10.1017/9781108762571.002

5. Khourdaji I., Lee H., Smith R.P. Frontiers in hormone therapy for male infertility. Transl Androl Urol 2018;7(Suppl 3):S353–S66. DOI: 10.21037/tau.2018.04.03

6. Shah R., Agarwal A., Kavoussi P. et al. Consensus and diversity in the management of varicocele for male infertility: results of a global practice survey and comparison with guidelines and recommendations. World J Mens Health 2022. Ahead of print. DOI: 10.5534/wjmh.220048

7. Punjani N., Kang C., Lamb D.J., Schlegel P.N. Current updates and future perspectives in the evaluation of azoospermia: a systematic review. Arab J Urol 2021;19(3):206–14. DOI: 10.1080/2090598X.2021.1954415

8. Simon L., Zini A., Dyachenko A. et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 2017;19(1):80–90. DOI: 10.4103/1008-682X.182822

9. Martins da Silva S.J. Male infertility and antioxidants: one small step for man, no giant leap for andrology? Reprod Biomed Online 2019;39(6):879–83. DOI: 10.1016/j.rbmo.2019.08.008

10. Majzoub A., Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 2018;16(1):113–24. DOI: 10.1016/j.aju.2017.11.013

11. De Ligny W., Smits R.M., Mackenzie-Proctor R. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022;5(5):CD007411. DOI: 10.1002/14651858.CD007411.pub5

12. Moreno I., Míguez-Forjan J.M., Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015;42(2):33–44. DOI: 10.5653/cerm.2015.42.2.33

13. Bhartiya D., Anand S., Patel H., Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017;15(1):89. DOI: 10.1186/s12958-017-0308-8

14. Abdelaal N.E., Tanga B.M., Abdelgawad M. et al. Cellular therapy via spermatogonial stem cells for treating impaired spermatogenesis, non-obstructive azoospermia. Cells 2021;10(7):1779. DOI: 10.3390/cells10071779

15. Tan K., Song H.W., Thompson M. et al. Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc Natl Acad Sci U S A 2020;117(30):17832–41. DOI: 10.1073/pnas.2000362117

16. Kothandaraman N., Agarwal A., Abu-Elmagd M., Al-Qahtani M.H. Pathogenic landscape of idiopathic male infertility: new insight towards its regulatory networks. NPJ Genom Med 2016;1:16023. DOI: 10.1038/npjgenmed.2016.23

17. Cannarella R., Barbagallo F., Crafa A. et al. Seminal plasma transcriptome and proteome: towards a molecular approach in the diagnosis of idiopathic male infertility. Int J Mol Sci 2020;21(19):7308. DOI: 10.3390/ijms21197308

18. Jodar M., Soler-Ventura A., Oliva R. Semen proteomics and male infertility. J Proteomics 2017;162:125–34. DOI: 10.1016/j.jprot.2016.08.018

19. Kim W.J., Kim B.S., Kim H.J. et al. Intratesticular peptidyl prolyl isomerase 1 protein delivery using cationic lipid-coated fibroin nanoparticle complexes rescues male infertility in mice. ACS Nano 2020;14(10):13217–31. DOI: 10.1021/acsnano.0c04936

20. Fraser B., Peters A.E., Sutherland J.M. et al. Biocompatible nanomaterials as an emerging technology in reproductive health; a focus on the male. Front Physiol 2021;12:753686. DOI: 10.3389/fphys.2021.753686

21. Ertas Y.N., Abedi Dorcheh K., Akbari A., Jabbari E. Nanoparticles for targeted drug delivery to cancer stem cells: a review of recent advances. Nanomaterials (Basel) 2021;11(7):1755. DOI: 10.3390/nano11071755

22. Agarwal A., Durairajanayagam D., Halabi J. et al. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014;29(1):32–58. DOI: 10.1016/j.rbmo.2014.02.013

23. Liu G., Li S., Ren J. et al. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J Ovarian Res 2020;13(1):108. DOI: 10.1186/s13048-020-00695-8

24. Sánchez A., Vázquez A. Bioactive peptides: a review. Food Qual Saf 2017;1:29–46. DOI: 10.1093/fqsafe/fyx006

25. Bhat Z.F., Kumar S., Bhat H.F. Bioactive peptides of animal origin: a review. J Food Sci Technol 2015;52(9):5377–92. DOI: 10.1007/s13197-015-1731-5

26. Porta A., Petrone A.M., Morello S. et al. Design and expression of peptides with antimicrobial activity against Salmonella typhimurium. Cell Microbiol 2017;19(2):e12645. DOI: 10.1111/cmi.12645

27. Ibrahim H.R., Ahmed A.S., Miyata T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res 2017;8(1):63–71. DOI: 10.1016/j.jare.2016.12.002

28. Shiratsuchi E., Ura M., Nakaba M. et al. Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts. J Pept Sci 2010;16(11):652–8. DOI: 10.1002/psc.1277

29. Kongcharoen A., Poolex W., Wichai T., Boonsombat R. Production of an antioxidative peptide from hairy basil seed waste by a recombinant Escherichia coli. Biotechnol Lett 2016;38(7):1195–201. DOI: 10.1007/s10529-016-2096-1

30. Blaurock N., Schmerler D., Hünniger K. et al. C-terminal alpha-1 antitrypsin peptide: a new sepsis biomarker with immunomodulatory function. Mediators Inflamm 2016;2016:6129437. DOI: 10.1155/2016/6129437

31. Iwaniak A., Darewicz M., Minkiewicz P. et al. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties (In Polish)]. Pol Merkur Lekarski 2014;36(216):403–6.

32. Wang J., Wu Y., Chen Z. et al. Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. Int J Mol Sci 2022;23(3):1421. DOI: 10.3390/ijms23031421

33. Zhou J., Yang X., Zhang W. et al. Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer Agents Med Chem 2017;17(4):635–43. DOI: 10.2174/1871520616666160627091131

34. Tadesse S.A., Emire S.A. Production and processing of antioxidant bioactive peptides: a driving force for the functional food market. Heliyon 2020;6(8):e04765. DOI: 10.1016/j.heliyon.2020.e04765

35. Wu S., Yan M., Ge R., Cheng C.Y. Crosstalk between Sertoli and Germ cells in male fertility. Trends Mol Med 2020;26(2):215–31. DOI: 10.1016/j.molmed.2019.09.006

36. Satake H., Matsubara S., Aoyama M. et al. GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity. Front Endocrinol (Lausanne) 2013;4:100. DOI: 10.3389/fendo.2013.00100

37. Hauser A.S., Chavali S., Masuho I. et al. Pharmacogenomics of GPCR drug targets. Cell 2018;172(1–2):4 –54.e19. DOI: 10.1016/j.cell.2017.11.033

38. Vaudry H., Tonon M.C., Vaudry D. Editorial: trends in regulatory peptides. Front Endocrinol (Lausanne) 2018;9:125. DOI: 10.3389/fendo.2018.00125.

39. Zhang D., Wang Y., Lin H. et al. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020;177(24):5489–508. DOI: 10.1111/bph.15252

40. Korhonen H., Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 2003;9:1297–308. DOI: 10.2174/1381612033454892.

41. Пушкарь Д.Ю., Куприянов Ю.А., Берников А.Н. и др. Оценка безопасности и эффективности лекарственного препарата на основе регуляторных полипептидов семенников PPR-001. Урология 2021;6:100–8. DOI: 10.18565/urology.2021.6.100-108

Andrology and Genital Surgery. 2022; 23: 48-53

Current and promising methods of idiopathic male infertility treatment

Efremov E. A., Kasatonova E. V.

https://doi.org/10.17650/2070-9781-2022-23-3-48-53

Abstract

For a significant number of couples around the world, male infertility is a serious ordeal. The truth is that this is also a major clinical challenge for the andrologist – up to 50 % of men with infertility have no identifiable etiology and there is no effective, available evidence-based treatment. For a long time, antioxidant supplements have been used as empiric therapy, but there is still no conclusive evidence that fertility and live birth rates actually improve after this approach has been used. This review is an attempt to summarize current and prospective treatments for idiopathic male infertility. Particular attention is paid to regulatory peptides as promising candidates for improving male fertility.

References

1. WHO Manual for the standardized investigation, diagnosis and management of the infertile male. Cambridge: Cambridge University Press, 2000.

2. Minhas S., Bettocchi C., Boeri L. et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur Urol 2021;80(5):603–20. DOI: 10.1016/j.eururo.2021.08.014

3. Martins da Silva S.J., Brown S.G., Sutton K. et al. Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem. Hum Reprod 2017;32(5):974–84. DOI: 10.1093/humrep/dex055

4. Nixon B., Bromfield E.G. New horizons in male subfertility and infertility. In: Male and sperm factors that maximize IVF success. Ed. by R.J. Aitken, D. Mortimer, G. Kovacs. Cambridge University Press, 2020. P. 15–27. DOI: 10.1017/9781108762571.002

5. Khourdaji I., Lee H., Smith R.P. Frontiers in hormone therapy for male infertility. Transl Androl Urol 2018;7(Suppl 3):S353–S66. DOI: 10.21037/tau.2018.04.03

6. Shah R., Agarwal A., Kavoussi P. et al. Consensus and diversity in the management of varicocele for male infertility: results of a global practice survey and comparison with guidelines and recommendations. World J Mens Health 2022. Ahead of print. DOI: 10.5534/wjmh.220048

7. Punjani N., Kang C., Lamb D.J., Schlegel P.N. Current updates and future perspectives in the evaluation of azoospermia: a systematic review. Arab J Urol 2021;19(3):206–14. DOI: 10.1080/2090598X.2021.1954415

8. Simon L., Zini A., Dyachenko A. et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 2017;19(1):80–90. DOI: 10.4103/1008-682X.182822

9. Martins da Silva S.J. Male infertility and antioxidants: one small step for man, no giant leap for andrology? Reprod Biomed Online 2019;39(6):879–83. DOI: 10.1016/j.rbmo.2019.08.008

10. Majzoub A., Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 2018;16(1):113–24. DOI: 10.1016/j.aju.2017.11.013

11. De Ligny W., Smits R.M., Mackenzie-Proctor R. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022;5(5):CD007411. DOI: 10.1002/14651858.CD007411.pub5

12. Moreno I., Míguez-Forjan J.M., Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015;42(2):33–44. DOI: 10.5653/cerm.2015.42.2.33

13. Bhartiya D., Anand S., Patel H., Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017;15(1):89. DOI: 10.1186/s12958-017-0308-8

14. Abdelaal N.E., Tanga B.M., Abdelgawad M. et al. Cellular therapy via spermatogonial stem cells for treating impaired spermatogenesis, non-obstructive azoospermia. Cells 2021;10(7):1779. DOI: 10.3390/cells10071779

15. Tan K., Song H.W., Thompson M. et al. Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc Natl Acad Sci U S A 2020;117(30):17832–41. DOI: 10.1073/pnas.2000362117

16. Kothandaraman N., Agarwal A., Abu-Elmagd M., Al-Qahtani M.H. Pathogenic landscape of idiopathic male infertility: new insight towards its regulatory networks. NPJ Genom Med 2016;1:16023. DOI: 10.1038/npjgenmed.2016.23

17. Cannarella R., Barbagallo F., Crafa A. et al. Seminal plasma transcriptome and proteome: towards a molecular approach in the diagnosis of idiopathic male infertility. Int J Mol Sci 2020;21(19):7308. DOI: 10.3390/ijms21197308

18. Jodar M., Soler-Ventura A., Oliva R. Semen proteomics and male infertility. J Proteomics 2017;162:125–34. DOI: 10.1016/j.jprot.2016.08.018

19. Kim W.J., Kim B.S., Kim H.J. et al. Intratesticular peptidyl prolyl isomerase 1 protein delivery using cationic lipid-coated fibroin nanoparticle complexes rescues male infertility in mice. ACS Nano 2020;14(10):13217–31. DOI: 10.1021/acsnano.0c04936

20. Fraser B., Peters A.E., Sutherland J.M. et al. Biocompatible nanomaterials as an emerging technology in reproductive health; a focus on the male. Front Physiol 2021;12:753686. DOI: 10.3389/fphys.2021.753686

21. Ertas Y.N., Abedi Dorcheh K., Akbari A., Jabbari E. Nanoparticles for targeted drug delivery to cancer stem cells: a review of recent advances. Nanomaterials (Basel) 2021;11(7):1755. DOI: 10.3390/nano11071755

22. Agarwal A., Durairajanayagam D., Halabi J. et al. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014;29(1):32–58. DOI: 10.1016/j.rbmo.2014.02.013

23. Liu G., Li S., Ren J. et al. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J Ovarian Res 2020;13(1):108. DOI: 10.1186/s13048-020-00695-8

24. Sánchez A., Vázquez A. Bioactive peptides: a review. Food Qual Saf 2017;1:29–46. DOI: 10.1093/fqsafe/fyx006

25. Bhat Z.F., Kumar S., Bhat H.F. Bioactive peptides of animal origin: a review. J Food Sci Technol 2015;52(9):5377–92. DOI: 10.1007/s13197-015-1731-5

26. Porta A., Petrone A.M., Morello S. et al. Design and expression of peptides with antimicrobial activity against Salmonella typhimurium. Cell Microbiol 2017;19(2):e12645. DOI: 10.1111/cmi.12645

27. Ibrahim H.R., Ahmed A.S., Miyata T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res 2017;8(1):63–71. DOI: 10.1016/j.jare.2016.12.002

28. Shiratsuchi E., Ura M., Nakaba M. et al. Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts. J Pept Sci 2010;16(11):652–8. DOI: 10.1002/psc.1277

29. Kongcharoen A., Poolex W., Wichai T., Boonsombat R. Production of an antioxidative peptide from hairy basil seed waste by a recombinant Escherichia coli. Biotechnol Lett 2016;38(7):1195–201. DOI: 10.1007/s10529-016-2096-1

30. Blaurock N., Schmerler D., Hünniger K. et al. C-terminal alpha-1 antitrypsin peptide: a new sepsis biomarker with immunomodulatory function. Mediators Inflamm 2016;2016:6129437. DOI: 10.1155/2016/6129437

31. Iwaniak A., Darewicz M., Minkiewicz P. et al. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties (In Polish)]. Pol Merkur Lekarski 2014;36(216):403–6.

32. Wang J., Wu Y., Chen Z. et al. Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. Int J Mol Sci 2022;23(3):1421. DOI: 10.3390/ijms23031421

33. Zhou J., Yang X., Zhang W. et al. Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer Agents Med Chem 2017;17(4):635–43. DOI: 10.2174/1871520616666160627091131

34. Tadesse S.A., Emire S.A. Production and processing of antioxidant bioactive peptides: a driving force for the functional food market. Heliyon 2020;6(8):e04765. DOI: 10.1016/j.heliyon.2020.e04765

35. Wu S., Yan M., Ge R., Cheng C.Y. Crosstalk between Sertoli and Germ cells in male fertility. Trends Mol Med 2020;26(2):215–31. DOI: 10.1016/j.molmed.2019.09.006

36. Satake H., Matsubara S., Aoyama M. et al. GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity. Front Endocrinol (Lausanne) 2013;4:100. DOI: 10.3389/fendo.2013.00100

37. Hauser A.S., Chavali S., Masuho I. et al. Pharmacogenomics of GPCR drug targets. Cell 2018;172(1–2):4 –54.e19. DOI: 10.1016/j.cell.2017.11.033

38. Vaudry H., Tonon M.C., Vaudry D. Editorial: trends in regulatory peptides. Front Endocrinol (Lausanne) 2018;9:125. DOI: 10.3389/fendo.2018.00125.

39. Zhang D., Wang Y., Lin H. et al. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020;177(24):5489–508. DOI: 10.1111/bph.15252

40. Korhonen H., Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 2003;9:1297–308. DOI: 10.2174/1381612033454892.

41. Pushkar' D.Yu., Kupriyanov Yu.A., Bernikov A.N. i dr. Otsenka bezopasnosti i effektivnosti lekarstvennogo preparata na osnove regulyatornykh polipeptidov semennikov PPR-001. Urologiya 2021;6:100–8. DOI: 10.18565/urology.2021.6.100-108