Журналов:     Статей:        

Андрология и генитальная хирургия. 2020; 21: 89-97

Докозагексаеновая кислота в лечении мужского бесплодия, вызванного высоким уровнем фрагментации ДНК сперматозоидов

Виноградов И. В., Живулько А. Р.

https://doi.org/10.17650/2070-9781-2020-21-4-89-97

Аннотация

Введение. Антиоксидантная терапия продолжает быть одним из основных методов лечения мужского бесплодия, ассоциированного с высоким уровнем фрагментации ДНК сперматозоидов. Одним из перспективных компонентов антиоксидантной терапии является докозагексаеновая кислота (ДГК). Это вещество обладает не только антиоксидантными, но и противовоспалительными свойствами, что позволяет рассматривать его как перспективный компонент комплексного лечения пациентов с высоким уровнем фрагментации ДНК сперматозоидов на фоне воспалительного процесса в добавочных половых железах.

Материалы и методы. У 117 пациентов с мужским бесплодием, ассоциированным с высоким уровнем фрагментации ДНК сперматозоидов, изучены спермограмма, результат MAR-теста, индекс фрагментации ДНК сперматозоидов, степень криотолерантности. Пациенты были распределены по 2 группам: с высоким (>1 млн / мл) и низким (<1 млн / мл) содержанием лейкоцитов в эякуляте, а далее рандомизированы в 2 подгруппы активного лечения и 2 подгруппы плацебо. Пациенты из подгрупп активного лечения получали по 1470 мг ДГК в сутки в течение 3 мес, пациенты из подгрупп плацебо принимали плацебо по аналогичной схеме. По завершении курса лечения спермиологические исследования проведены повторно.

Результаты. После лечения в подгруппе с высоким содержанием лейкоцитов в эякуляте наблюдалось увеличение доли подвижных сперматозоидов (42 % (25–61 %) против 25  (15–47 %), p <0,05), жизнеспособных сперматозоидов (73 % (63–81 %) против 41 % (35–64 %), p <0,05), снижение индекса фрагментации ДНК сперматозоидов (21 % (12–28 %) против 33 % (25–39 %), p <0,05) и концентрации лейкоцитов в семенной жидкости (1 млн /мл (0,7–1,7 млн / мл) против 1,5 млн / мл (1,1–2,1 млн / мл), p <0,05). Увеличение доли подвижных сперматозоидов (15 % (8–19 %) против 8 % (5–11 %), p <0,05) и жизнеспособных сперматозоидов (37 % (25–46 %) против 24 % (17–40 %), p <0,05) также зарегистрировано после теста на криотолерантность. В подгруппе с низким содержанием лейкоцитов в эякуляте отмечено увеличение доли подвижных сперматозоидов (43 % (27–63 %) против 34 % (21–54 %), p <0,05), жизнеспособных сперматозоидов (77 % (66–85 %) против 65 % (54,5–76,0 %), p <0,05) и снижение индекса фрагментации ДНК сперматозоидов (9 % (5,5–20,0 %) против 25 % (18–33 %), p <0,05). Наблюдалось увеличение доли подвижных сперматозоидов (17 % (10–23 %) против 6 % (5,0–10,5 %), p <0,05) и жизнеспособных сперматозоидов (41 % (32,5–53,0 %) против 37 % (30–49 %), p <0,05) после теста на криотолерантность.

Заключение. ДГК способствует повышению подвижности, жизнеспособности сперматозоидов, снижению уровня фрагментации ДНК сперматозоидов и увеличению их криотолерантности вне зависимости от наличия воспалительного процесса в добавочных половых железах.

Список литературы

1. Jungwirth А., Diemer T., Kopa Z. et al. Male infertility. EAU Guideline 2018. Available at: https://uroweb.org/guideline/male-infertility/#8.

2. Semet M., Paci M., Saïas-Magnan J. et al. The impact of drugs on male fertility: a review. Andrology 2017;5(4): 640–63. DOI: 10.1111/andr.12366.

3. Лебедев Г.С., Голубев Н.А., Шадеркин И.А. и др. Мужское бесплодие в Российской Федерации: статистические данные за 2000–2018 годы. Экспериментальная и клиническая урология 2019;(4):4–13.

4. Hamilton T.R.D.S., Assumpção M.E.O.D. Sperm DNA fragmentation: causes and identification. Zygote 2020;28(1):1–8. DOI: 10.1017/S0967199419000595.

5. Kim G.Y. What should be done for men with sperm DNA fragmentation? Clin Exp Reprod Med 2018;45(3):101–9. DOI: 10.5653/cerm.2018.45.3.101.

6. Zeqiraj A., Beadini S., Beadini N. et al. Male infertility and sperm DNA fragmentation. Open Access Maced J Med Sci 2018;6(8):1342–5. DOI: 10.3889/oamjms.2018.311.

7. Qiu Y., Yang H., Li C., Xu C. Progress in research on sperm DNA fragmentation. Med Sci Monit 2020;26:e918746. DOI: 10.12659/MSM.918746.

8. Niederberger C. Re: Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. J Urol 2020;203(4):649. DOI: 10.1097/JU.0000000000000722.02.

9. Zheng W.W., Song G., Wang Q.L. et. al. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J Androl 2018;20(1):75–9. DOI: 10.4103/aja.aja_19_17.

10. Agarwal A., Barbăroșie C., Ambar R., Finelli R. The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction. Int J Mol Sci 2020;21(11):3882. DOI: 10.3390/ijms21113882.

11. Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nat Rev Urol 2017;14(8):470–85. DOI: 10.1038/nrurol.2017.69.

12. Ribas-Maynou J., Yeste M. Oxidative stress in male infertility: causes, effects in assisted reproductive techniques, and protective support of antioxidants. Biology (Basel) 2020;9(4):77. DOI: 10.3390/biology9040077.

13. Ritchie C., Ko E.Y. Oxidative stress in the pathophysiology of male infertility. Andrologia 2020;e13581. DOI: 10.1111/and.13581.

14. Smits R.M., Mackenzie-Proctor R., Yazdani A. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2019;3(3):CD007411. DOI: 10.1002/14651858.CD007411.pub4.

15. Ménézo Y.J., Hazout A., Panteix G. et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 2007;14(4):418–21. DOI: 10.1016/s1472-6483(10)60887-5.

16. Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 2020;77(1):93–113. DOI: 10.1007/s00018-019-03253-8.

17. Thakur A.S., Littarru G.P., Funahashi I. Effect of ubiquinol therapy on sperm parameters and serum testosterone levels in oligoasthenozoospermic infertile men. J Clin Diagn Res 2015;9(9):BC01–3. DOI: 10.7860/JCDR/2015/13617.6424.

18. Greco E., Romano S., Iacobelli M. et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 2005;20(9): 2590–4. DOI: 10.1093/humrep/dei091.

19. Haghighian H.K., Haidari F., Mohammadi-Asl J., Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertil Steril 2015;104(2):318–24. DOI: 10.1016/j.fertnstert.2015.05.014.

20. Gual-Frau J., Abad C., Amengual M.J. et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb) 2015;18(3):225–9. DOI: 10.3109/14647273.2015.1050462.

21. Comhaire F., Christophe A., Zalata A. et al. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2000;63(3):159–65. DOI: 10.1054/plef.2000.0174.

22. Martínez-Soto J.C., Domingo J.C., Cordobilla B. et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med 2016;62(6):387–95. DOI: 10.1080/19396368.2016.1246623.

23. Kim Y.J., Chung H.Y. Antioxidative and anti-inflammatory actions of docosahexaenoic acid and eicosapentaenoic acid in renal epithelial cells and macrophages. J Med Food 2007;10(2):225–31. DOI: 10.1089/jmf.2006.092.

24. Leahy T., Gadella B. New insights into the regulation of cholesterol effluxfrom the sperm membrane. Asian J Androl 2015;17(4):561–7. DOI: 10.4103/1008-682X.153309.

25. Lenzi A., Picardo M., Gandini L., Dondero F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 1996;2(3):246–56. DOI: 10.1093/humupd/2.3.246.

26. Holowka D., Baird B. Roles for lipid heterogeneity in immunoreceptor signaling. Biochim Biophys Acta 2016;1861(8 Pt B):830–6. DOI: 10.1016/j.bbalip.2016.03.019.

27. Hou T.Y., McMurray D.N., Chapkin R.S. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol 2016;15:2–9. DOI: 10.1016/j.ejphar.2015.03.091.

28. Rodríguez-Cruz M., Serna D.S. Nutrigenomics of ω-3 fatty acids: regulators of the master transcription factors. Nutrition 2017;41:90–6. DOI: 10.1016/j.nut.2017.04.012.

29. Hashimoto M., Hossain S., Mamun A. et al. Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol 2017;37(5):579–97. DOI: 10.1080/07388551.2016.1207153.

30. Stillwell W., Wassall S.R. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 2003;126(1):1–27. DOI: 10.1016/s0009-3084(03)00101-4.

31. Hosseini B., Nourmohamadi M., Hajipour S. et al. The effect of omega-3 fatty acids, EPA, and/or DHA on male infertility: a systematic review and meta-analysis. J Diet Suppl 2018;16(2):245–56. DOI: 10.1080/19390211.2018.1431753.

32. Aksoy Y., Aksoy H., Altinkaynak K. et al. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2006;75(2):75–9. DOI: 10.1016/j.plefa.2006.06.002.

33. Martínez-Soto J.C., Landeras J., Gadea J. et al. Spermatozoa and seminal plasma fatty acids as predictors of cryopreser va tion success. Andrology 2013;1(3):365–75. DOI: 10.1111/j.2047-2927.2012.00040.x.

34. Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia 2011;43(1):38–47. DOI: 10.1111/j.1439-0272.2009.01013.x.

35. Виноградов И.В., Гамидов С.И., Габлия М.Ю. и др. Докозагексаеновая кислота в лечении идиопатических форм мужского бесплодия. Урология 2019;(1):78–83. DOI: 10.18565/urology.2019.16.78-83.

36. Виноградов И.В., Живулько А.Р., Виноградова Л.М., Королев С.В. Докозагексаеновая кислота в лечении мужского бесплодия. Андрология и генитальная хирургия 2018;(4):21–7. DOI: 10.17650/2070-9781-2018-19-4-21-27.

37. Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 2015;1851(4):469–84. DOI: 10.1016/j.bbalip.2014.08.010.

38. Calder P.C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017;45(5): 1105–15. DOI: 10.1042/BST20160474.

39. Calder P.C. Polyunsaturated fatty acids and inflammation. Biochem Soc Trans 2005;33(Pt 2):423–7. DOI: 10.1042/BST0330423.

40. Naqvi A.Z., Hasturk H., Mu L. et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. J Dent Res 2014;93(8):767–73. DOI: 10.1177/0022034514541125.

41. Dawczynski C., Dittrich M., Neumann T. et al. Docosahexaenoic acid in the treatment of rheumatoid arthritis: a double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sun flower oil. Clin Nutr 2018;37(2):494–504. DOI: 10.1016/j.clnu.2017.02.021.

42. Belluzzi A., Brignola C., Campieri M. et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 1996;334(24):1557–60. DOI: 10.1056/NEJM199606133342401.

43. Goldberg R.J., Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 2007;129(1–2):210–23. DOI: 10.1016/j.pain.2007.01.020.

44. Sheppard J.D. Jr, Singh R., McClellan A.J. et al. Long-term supplementation with ω-6 and ω-3 PUFAs improves moderate-to-severe keratoconjunctivitis sicca: a randomized double-blind clinical trial. Cornea 2013;32(10):1297–304. DOI: 10.1097/ICO.0b013e318299549c.

45. Brunner R.J., Demeter J.H., Sindhwani P. Review of guidelines for the evaluation and treatment of leukocytospermia in male infertility. World J Mens Health 2019;37(2):128–37. DOI: 10.5534/wjmh.180078.

46. Lobascio A.M., De Felici M., Anibaldi M. et al. Involvement of seminal leukocytes, reactive oxygen species, and sperm mitochondrial membrane potential in the DNA damage of the human sper matozoa. Andrology 2015;3(2):265–70. DOI: 10.1111/andr.302.

47. Saleh R., Agarwal A., Kandirali E., Sharma R. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril 2002;78(6):1215–24. DOI: 10.1016/s0015-0282(02)04237-1.

Andrology and Genital Surgery. 2020; 21: 89-97

Docosahexaenoic acid in the treatment of male infertility caused by high sperm DNA fragmentation

Vinogradov I. V., Zhivulko A. R.

https://doi.org/10.17650/2070-9781-2020-21-4-89-97

Abstract

Introduction. Antioxidant supplementation therapy continues to be the main treatment for male infertility associated with high level of sperm DNA damage. Docosahexaenoic acid (DHA) is one of the most promising components of antioxidant supplementation therapy. It also has anti-inflammatory properties that makes it interesting for treatment of patients with high level of sperm DNA damage and inflammation in male accessory glands.

Materials and methods.One hundred and seventeen (117) infertile patients with high level of sperm DNA damage were recruited for this randomized, double blind, placebo-controlled study. Semen analysis, MAR-test, SCD test and sperm cryotolerance test were performed to all patients. Subjects were divided into 2 groups with high (>1 mln / ml) and low (<1 mln / ml) semen leucocyte concertation and then randomized into 2 subgroups of active treatment and 2 placebo subgroups. The active treatment subgroups received 1470 mg / day of DHA for 3 months. The placebo group received placebo for the same period. Laboratory tests were repeated after the treatment course had been finished.

Results. Statistically significant increase in motility (42 % (25–61 %) vs 25 % (15–47 %), p <0.05), vitality (73 % (63–81 %) vs 41 % (35–64 %), p <0.05), decrease in sperm DNA fragmentation level (21 % (12–28 %) vs 33 % (25–39 %), p <0.05) and leucocyte concentration (1 million / ml (0.7–1.7 million / ml) vs 1,5 million / ml (1.1–2.1 million / ml), p <0.05) were observed in the subgroup with male accessory glands inflammation after treatment. Motility (15 % (8–19 %) vs 8 % (5–11 %), p <0.05) and vitality (37 % (25–46 %) vs 24 % (17–40 %), p <0.05) in this subgroup after a sperm cryotolerance test increased as well. In the subgroup with low semen leucocyte concertation statistically significant increase in motility (43 % (27–63 %) vs 34 % (21–54 %), p <0.05), vitality (77 % (66–85 %) vs 65 % (54.5–76.0 %), p <0.05) and decrease of sperm DNA fragmentation level (9 % (5.5–20.0 %) vs 25 % (18–33 %), p <0.05) were observed. DHA supplementation also resulted in statistically significant increase in motility (17 % (10–23 %) vs 6 % (5.0–10.5 %), p <0.05) and vitality (41 % (32.5–53.0 %) vs 37 % (30–49 %), p <0.05) after a sperm cryotolerance test in that subgroup.

Conclusion. DHA supplementation therapy increases motility, vitality, sperm cryotolerance and decreases sperm DNA fragmentation regardless of the presence of an inflammatory process in male accessory glands.

References

1. Jungwirth A., Diemer T., Kopa Z. et al. Male infertility. EAU Guideline 2018. Available at: https://uroweb.org/guideline/male-infertility/#8.

2. Semet M., Paci M., Saïas-Magnan J. et al. The impact of drugs on male fertility: a review. Andrology 2017;5(4): 640–63. DOI: 10.1111/andr.12366.

3. Lebedev G.S., Golubev N.A., Shaderkin I.A. i dr. Muzhskoe besplodie v Rossiiskoi Federatsii: statisticheskie dannye za 2000–2018 gody. Eksperimental'naya i klinicheskaya urologiya 2019;(4):4–13.

4. Hamilton T.R.D.S., Assumpção M.E.O.D. Sperm DNA fragmentation: causes and identification. Zygote 2020;28(1):1–8. DOI: 10.1017/S0967199419000595.

5. Kim G.Y. What should be done for men with sperm DNA fragmentation? Clin Exp Reprod Med 2018;45(3):101–9. DOI: 10.5653/cerm.2018.45.3.101.

6. Zeqiraj A., Beadini S., Beadini N. et al. Male infertility and sperm DNA fragmentation. Open Access Maced J Med Sci 2018;6(8):1342–5. DOI: 10.3889/oamjms.2018.311.

7. Qiu Y., Yang H., Li C., Xu C. Progress in research on sperm DNA fragmentation. Med Sci Monit 2020;26:e918746. DOI: 10.12659/MSM.918746.

8. Niederberger C. Re: Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. J Urol 2020;203(4):649. DOI: 10.1097/JU.0000000000000722.02.

9. Zheng W.W., Song G., Wang Q.L. et. al. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J Androl 2018;20(1):75–9. DOI: 10.4103/aja.aja_19_17.

10. Agarwal A., Barbăroșie C., Ambar R., Finelli R. The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction. Int J Mol Sci 2020;21(11):3882. DOI: 10.3390/ijms21113882.

11. Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nat Rev Urol 2017;14(8):470–85. DOI: 10.1038/nrurol.2017.69.

12. Ribas-Maynou J., Yeste M. Oxidative stress in male infertility: causes, effects in assisted reproductive techniques, and protective support of antioxidants. Biology (Basel) 2020;9(4):77. DOI: 10.3390/biology9040077.

13. Ritchie C., Ko E.Y. Oxidative stress in the pathophysiology of male infertility. Andrologia 2020;e13581. DOI: 10.1111/and.13581.

14. Smits R.M., Mackenzie-Proctor R., Yazdani A. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2019;3(3):CD007411. DOI: 10.1002/14651858.CD007411.pub4.

15. Ménézo Y.J., Hazout A., Panteix G. et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 2007;14(4):418–21. DOI: 10.1016/s1472-6483(10)60887-5.

16. Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 2020;77(1):93–113. DOI: 10.1007/s00018-019-03253-8.

17. Thakur A.S., Littarru G.P., Funahashi I. Effect of ubiquinol therapy on sperm parameters and serum testosterone levels in oligoasthenozoospermic infertile men. J Clin Diagn Res 2015;9(9):BC01–3. DOI: 10.7860/JCDR/2015/13617.6424.

18. Greco E., Romano S., Iacobelli M. et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 2005;20(9): 2590–4. DOI: 10.1093/humrep/dei091.

19. Haghighian H.K., Haidari F., Mohammadi-Asl J., Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertil Steril 2015;104(2):318–24. DOI: 10.1016/j.fertnstert.2015.05.014.

20. Gual-Frau J., Abad C., Amengual M.J. et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb) 2015;18(3):225–9. DOI: 10.3109/14647273.2015.1050462.

21. Comhaire F., Christophe A., Zalata A. et al. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2000;63(3):159–65. DOI: 10.1054/plef.2000.0174.

22. Martínez-Soto J.C., Domingo J.C., Cordobilla B. et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med 2016;62(6):387–95. DOI: 10.1080/19396368.2016.1246623.

23. Kim Y.J., Chung H.Y. Antioxidative and anti-inflammatory actions of docosahexaenoic acid and eicosapentaenoic acid in renal epithelial cells and macrophages. J Med Food 2007;10(2):225–31. DOI: 10.1089/jmf.2006.092.

24. Leahy T., Gadella B. New insights into the regulation of cholesterol effluxfrom the sperm membrane. Asian J Androl 2015;17(4):561–7. DOI: 10.4103/1008-682X.153309.

25. Lenzi A., Picardo M., Gandini L., Dondero F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 1996;2(3):246–56. DOI: 10.1093/humupd/2.3.246.

26. Holowka D., Baird B. Roles for lipid heterogeneity in immunoreceptor signaling. Biochim Biophys Acta 2016;1861(8 Pt B):830–6. DOI: 10.1016/j.bbalip.2016.03.019.

27. Hou T.Y., McMurray D.N., Chapkin R.S. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol 2016;15:2–9. DOI: 10.1016/j.ejphar.2015.03.091.

28. Rodríguez-Cruz M., Serna D.S. Nutrigenomics of ω-3 fatty acids: regulators of the master transcription factors. Nutrition 2017;41:90–6. DOI: 10.1016/j.nut.2017.04.012.

29. Hashimoto M., Hossain S., Mamun A. et al. Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol 2017;37(5):579–97. DOI: 10.1080/07388551.2016.1207153.

30. Stillwell W., Wassall S.R. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 2003;126(1):1–27. DOI: 10.1016/s0009-3084(03)00101-4.

31. Hosseini B., Nourmohamadi M., Hajipour S. et al. The effect of omega-3 fatty acids, EPA, and/or DHA on male infertility: a systematic review and meta-analysis. J Diet Suppl 2018;16(2):245–56. DOI: 10.1080/19390211.2018.1431753.

32. Aksoy Y., Aksoy H., Altinkaynak K. et al. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot Essent Fatty Acids 2006;75(2):75–9. DOI: 10.1016/j.plefa.2006.06.002.

33. Martínez-Soto J.C., Landeras J., Gadea J. et al. Spermatozoa and seminal plasma fatty acids as predictors of cryopreser va tion success. Andrology 2013;1(3):365–75. DOI: 10.1111/j.2047-2927.2012.00040.x.

34. Safarinejad M.R. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia 2011;43(1):38–47. DOI: 10.1111/j.1439-0272.2009.01013.x.

35. Vinogradov I.V., Gamidov S.I., Gabliya M.Yu. i dr. Dokozageksaenovaya kislota v lechenii idiopaticheskikh form muzhskogo besplodiya. Urologiya 2019;(1):78–83. DOI: 10.18565/urology.2019.16.78-83.

36. Vinogradov I.V., Zhivul'ko A.R., Vinogradova L.M., Korolev S.V. Dokozageksaenovaya kislota v lechenii muzhskogo besplodiya. Andrologiya i genital'naya khirurgiya 2018;(4):21–7. DOI: 10.17650/2070-9781-2018-19-4-21-27.

37. Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 2015;1851(4):469–84. DOI: 10.1016/j.bbalip.2014.08.010.

38. Calder P.C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017;45(5): 1105–15. DOI: 10.1042/BST20160474.

39. Calder P.C. Polyunsaturated fatty acids and inflammation. Biochem Soc Trans 2005;33(Pt 2):423–7. DOI: 10.1042/BST0330423.

40. Naqvi A.Z., Hasturk H., Mu L. et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. J Dent Res 2014;93(8):767–73. DOI: 10.1177/0022034514541125.

41. Dawczynski C., Dittrich M., Neumann T. et al. Docosahexaenoic acid in the treatment of rheumatoid arthritis: a double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sun flower oil. Clin Nutr 2018;37(2):494–504. DOI: 10.1016/j.clnu.2017.02.021.

42. Belluzzi A., Brignola C., Campieri M. et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 1996;334(24):1557–60. DOI: 10.1056/NEJM199606133342401.

43. Goldberg R.J., Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 2007;129(1–2):210–23. DOI: 10.1016/j.pain.2007.01.020.

44. Sheppard J.D. Jr, Singh R., McClellan A.J. et al. Long-term supplementation with ω-6 and ω-3 PUFAs improves moderate-to-severe keratoconjunctivitis sicca: a randomized double-blind clinical trial. Cornea 2013;32(10):1297–304. DOI: 10.1097/ICO.0b013e318299549c.

45. Brunner R.J., Demeter J.H., Sindhwani P. Review of guidelines for the evaluation and treatment of leukocytospermia in male infertility. World J Mens Health 2019;37(2):128–37. DOI: 10.5534/wjmh.180078.

46. Lobascio A.M., De Felici M., Anibaldi M. et al. Involvement of seminal leukocytes, reactive oxygen species, and sperm mitochondrial membrane potential in the DNA damage of the human sper matozoa. Andrology 2015;3(2):265–70. DOI: 10.1111/andr.302.

47. Saleh R., Agarwal A., Kandirali E., Sharma R. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril 2002;78(6):1215–24. DOI: 10.1016/s0015-0282(02)04237-1.