Журналов:     Статей:        

Андрология и генитальная хирургия. 2018; 19: 15-26

Механизм движения жгутиков сперматозоидов

Руднева С. А., Черных В. Б.

https://doi.org/10.17650/2070-9781-2018-19-3-15-26

Аннотация

Механизм движения ресничек и жгутиков сперматозоидов основан на скольжении дуплетов микротрубочек друг относительно друга благодаря поступательному движению динеинов – моторных белков, способных перемещаться по поверхности микротрубочек и трансформирующих химическую энергию, содержащуюся в аденозинтрифосфате, в механическую энергию движения. Ранее внешние и внутренние динеиновые ручки считали сходными по структуре и функциям, однако недавно полученные экспериментальные данные свидетельствуют о значительном их различии по составу субъединиц, расположению в аксонеме и механизмам регуляции. И хотя понимание принципов изменения активности описанных моторных белков остается неполным, установлены тонкие механизмы функционирования данных структур.

Список литературы

1. Noji H., Yasuda R., Yoshida M., Kinoshita K. Direct observation of the rotation of F1-ATPase. Nature 1997;386(6622):299–302. DOI: 10.1038/386299a0. PMID:9069291.

2. Kinoshita K. Jr, Yasuda R., Noji H. et al. F1-ATPase: a rotary motor made of a single molecule. Cell 1998;93(1): 21–4. PMID: 9546388.

3. Lindemann C.B., Lesich K.A. The geometric clutch at 20: stripping gears or gaining traction? Reproduction 2015;150(2):R45–53. DOI: 10.1530/REP-14-0498. PMID: 25918437.

4. Zamboni L. Sperm structure and its relevance to infertility. An electron microscopic study. Arch Pathol Lab Med 1992;116(4):325–44. PMID: 1558470.

5. Skowronek M.F., Alciaturi J., Casano- va G. et al. Value of quantitative ultramorphological sperm analysis in infertile men. Reprod Biol 2010;10(2):125–39. PMID: 20668504.

6. Брагина Е.Е., Бочарова Е.Н. Количественное электронно-микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная хирургия 2014;(1):41–50.

7. Kon T., Oyama T., Shimo-Kon R. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 2012;484(7394):345–50. DOI: 10.1038/nature10955. PMID: 22398446.

8. Schmidt H., Gleave E.S., Carter A.P. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 2012;19(5):492–7. DOI: 10.1038/nsmb.2272. PMID: 22426545.

9. Wirschell M., Hendrickson T., Sale W.S. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. Cell Motil Cytoskeleton 2007;64(8):569–79. DOI: 10.1002/cm.20211. PMID: 17549744.

10. Habermacher G., Sale W.S. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 1997;136(1):167–76. PMID: 9008711.

11. Tash J.S, Means A.R. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod 1982;26(4):745–63. PMID: 6282354.

12. Bannai H., Yoshimura M., Takahashi K., Shingyoji C. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. J Cell Sci 2000;113(Pt 5):831–9. PMID: 10671372.

13. Nicastro D., Schwartz C., Pierson J. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 2006;313(5789):944–8. DOI: 10.1126/science.1128618. PMID: 16917055.

14. Nicastro D., Fu X., Heuser T. et al. Cryoelectron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA 2011;108(42):E845–53. DOI: 10.1073/pnas.1106178108. PMID: 21930914.

15. Baccetti B., Afzelius B.A. The biology of the sperm cell. Monogr Dev Biol 1976;(10):1–254. PMID: 1107820.

16. Guichard P., Hachet V., Majubu N. et al. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr Biol 2013;23(17):1620–8. DOI: 10.1016/j.cub.2013.06.061. PMID: 23932403.

17. Stephens R.E., Oleszko-Szuts S., Linck R.W. Retention of ciliary ninefold structure after removal of microtubules. J Cell Sci 1989;92(Pt 3):391–402. PMID: 2592445.

18. Fawcett D.W. The cell. Philadelphia. 2nd edn. Philadelphia: W.B. Saunders Co, 1981. 855 p.

19. Linck R.W., Chemes H., Albertini D.F. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016;33(2):141–56. DOI: 10.1007/s10815-016-0652-1. PMID: 26825807.

20. Mohri H. Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature 1968;217(5133):1053–4. PMID: 4296139.

21. Linck R.W., Amos L.A., Amos W.B. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J Cell Biol 1985;100(1):126–35. PMID: 3880749.

22. Norrander J.M., Perrone C.A., Amos L.A., Linck R.W. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules. J Mol Biol 1996;257(2):385–97. DOI: 10.1006/jmbi.1996.0170. PMID: 8609631.

23. Linck R., Fu X., Lin J. et al. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem 2014;289(25):17427–44. PMID: 24794867. DOI: 10.1074/jbc.M114.568949.

24. Tanaka H., Iguchi N., Toyama Y. et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 2004;24(18):7958–64. DOI: 10.1128/MCB.24.18.7958-7964.2004. PMID: 15340058.

25. Paturle-Lafanechère L., Manier M., Trigault N. et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 1994;107(Pt 6):1529–43. PMID: 7962195.

26. Paturle-Lafanechère L., Eddé B., Denoulet P. et al. Characterization of a major brai1n tubulin variant which cannot be tyrosinated. Biochemistry 1991;30(43):10523–8. PMID: 1931974.

27. Mary J., Redeker V., Le Caer J.P. et al. Posttranslational modifications in the C-terminal tail of axonemal tubulin from sea urchin sperm. J Biol Chem 1996;271(17):9928–33. PMID: 8626629.

28. Eddé B., Rossier J., Le Caer J.P. et al. A combination of posttranslational modifications is responsible for the production of neuronal alpha-tubulin heterogeneity. J Cell Biochem 1991;46(2):134–42. DOI: 10.1002/jcb.240460207. PMID: 1680872.

29. Eddé B., Rossier J., Le Caer J.P. et al. Polyglutamylated alpha-tubulin can enter the tyrosination/detyrosination cycle. Biochemistry 1992;31(2):403–10. PMID: 1370628.

30. Alexander J.E., Hunt D.F., Lee M.K. et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci USA 1991;88(11):4685–9. PMID: 2052551.

31. Audebert S., Koulakoff A., BerwaldNetter Y. et al. Developmental regulation of polyglutamylated alpha- and betatubulin in mouse brain neurons. J Cell Sci 1994;107(Pt 8):2313–22. PMID: 7527057.

32. Kreitzer G., Liao G., Gundersen G.G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesindependent mechanism. Mol Biol Cell 1999;10(4):1105–18. DOI: 10.1091/mbc.10.4.1105. PMID: 10198060.

33. Bré M.H., Redeker V., Quibell M. et al. Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J Cell Sci 1996;109(Pt 4):727–38. PMID: 8718664.

34. Gibbons I.R., Rowe A.J. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 1965;149(3682):424–6. DOI: 10.1126/science.149.3682.424. PMID: 17809406.

35. Cole D.G. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 2003;4(7):435–42. PMID: 12795688.

36. Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: a class of chaperonelike ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999;9(1):27– 43. PMID: 9927482.

37. Gee M.A., Heuser J.E., Vallee R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 1997;390(6660):636–9. DOI: 10.1038/37663. PMID: 9403697.

38. Imamula K., Kon T., Ohkura R., Sutoh K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc Natl Acad Sci USA 2007;104(41):16134–9. DOI: 10.1073/pnas.0702370104. PMID: 17911268.

39. Summers K., Gibbons I.R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci USA 1971;68(12):3092–6. PMID: 5289252.

40. Brokaw C.J. Bend propagation by a sliding filament model for flagella. J Exp Biol 1971;55(2):289–304. PMID: 5114025.

41. Brokaw C.J. Flagellar movement: a sliding filament model. Science 1972;178(4060):455–62. PMID: 4673044.

42. Brokaw C.J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J 1972;12(5):564–86. DOI: 10.1016/S0006-3495(72)86104-6. PMID: 5030565.

43. Dymek E.E., Smith E.F. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity. J Cell Biol 2007;179(3):515–26. DOI: 10.1083/jcb.200703107. PMID: 17967944.

44. Smith E.F., Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton 2004;57(1):8–17. DOI: 10.1002/cm.10155. PMID: 14648553.

45. Аfzelius B.A. Electron microscopy of the sperm tail. Results obtained with a new fixative. J Biophys Biochem Cytol 1959;5(2):269–78. PMID: 13654448.

46. Satir P. Switching mechanisms in the control of ciliary motility. In: Modern cell biology. Vol. 4. Ed. by B. Satir. New York: Alan R. Liss, 1985. Pp. 1–46.

47. Satir P., Matsuoka T. Splitting the ciliary axoneme: implications for a “switchpoint” model of dynein arm activity in ciliary motion. Cell Motil Cytoskeleton 1989;14(3):345–58. DOI: 10.1002/cm.970140305. PMID: 2531043.

48. Brokaw C.J. Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella. Exp Cell Res 1961;22:151–62.

49. Cibert C. Are local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the 9 + 2 axoneme. J Theor Biol 2008;253(1):74– 89. DOI: 10.1016/j.jtbi.2008.01.029. PMID: 18405921.

50. Lindemann C.B. A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella. J Theor Biol 1994;168(2):175–89. DOI: 10.1006/jtbi.1994.1097.

51. Gibbons B.H., Gibbons I.R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci 1973;13(2):337–57. PMID: 4760590.

52. Warner F.D., Mitchell D.R. Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol 1978;76(2):261–77. PMID: 10605437.

53. Lindemann C.B., Rikmenspoel R. Sperm flagella: autonomous oscillations of the contractile system. Science 1972;175(4019):337–8. PMID: 4332629.

54. Lindemann C.B. Testing the geometric clutch hypothesis. Biol Cell 2004;96(9):681–90. DOI: 10.1016/j.biolcel.2004.08.001. PMID: 15567522.

55. Warner F.D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol 1974;63(1):35–63. PMID: 4424314.

56. Cibert C. Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function. Cell Motil Cytoskeleton 2003;54(4):296–316. DOI: 10.1002/cm.10100. PMID: 12601692.

57. Witman G.B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 1978;76(3):729–47.

58. Nonaka S., Tanaka Y., Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95(6):829–37. PMID: 9865700.

59. Marszalek J.R., Rui-Lozano P., Roberts E. et al. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 1999;96(9):5043–8. PMID: 10220415.

60. Nakano I., Kobayashi T., Yoshimura M., Shingyoji C. Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J Cell Sci 2003;116(Pt 8):1627–36. PMID: 12640046.

61. Huang B., Ramanis Z., Luck D.J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 1982;28(1):115–24. PMID: 6461414.

62. Porter M.E., Knott J.A., Gardner L.C. et al. Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain. J Cell Biol 1994;126(6):1495–507. PMID: 8089181.

63. Piperno G., Mead K., Shestak W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J Cell Biol 1992;118(6):1455–63. PMID: 1387875.

64. Suarez S.S., Varosi S.M., Dai X. Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc Natl Acad Sci USA 1993;90(10):4660–4. PMID: 8506314.

65. Naito Y., Kaneko H. Reactivated tritonextracted models of Paramecium: modification of ciliary movement by calcium ions. Science 1972;176(4034):523–4. PMID: 5032354.

66. Brokaw C.J. Calcium-induced asymmetrical beating of tritondemembranated sea urchin sperm flagella. J Cell Biol 1979;82:401–11. PMID: 479307.

67. Gibbons B.H., Gibbons I.R. Calciuminduced quiescence in reactivated sea urchin sperm. J Cell Biol 1980;84(1): 13–27. PMID: 7350165.

68. Wakabayashi K., Yagi T., Kamiya R. Ca2+dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system. Cell Motil Cytoskeleton 1997;38(1):22–8. DOI: 10.1002/(SICI)1097-0169(1997)38:1<22::AIDCM3>3.0.CO;2-J. PMID: 9295138.

69. Yang P., Diener D.R., Rosenbaum J.L., Sale W.S. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J Cell Biol 2001;153(6):1315–26. PMID: 11402073.

70. Salisbury J.L., Floyd G.L. Calciuminduced contraction of the rhizoplast of a quadriflagellate green alga. Science 1978;202(4371):975–7. DOI: 10.1126/science.202.4371.975. PMID: 17798796.

71. Salisbury J.L. Contractile flagellar roots: the role of calcium. J Submicrosc Cytol 1983;15:105–10.

72. Okamura N., Tajima Y., Soejima A. et al. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 1985;260(17):9699–705. PMID: 2991260.

73. Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003;79(4):829–43. PMID: 12749418.

74. Ford W.C. Regulation of sperm function by reactive oxygen species. Hum Reprod Update 2004;10(5):387–99. DOI: 10.1093/humupd/dmh034. PMID: 15218008.

75. Brokaw C.J., Luck D.J., Huang B. Analysis of the movement of Chlamydomonas flagella: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol 1982;92(3):722–32. PMID: 7085755.

76. Okada Y., Nonaka S., Tanaka Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 1999;4(4):459–68. PMID: 10549278.

77. Hamasaki T., Barkalow K., Richmond J., Satir P. cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Natl Acad Sci USA 1991;88(18):7918–22. PMID: 1654550.

78. Kotani N., Sakakibara H., Burgess S.A. et al. Mechanical properties of inner-arm dynein-F (dynein I1) studied with in vitro motility assays. Biophys J 2007;93(3):886– 94. DOI: 10.1529/biophysj.106.101964. PMID: 17496036.

79. Smith E.F. Hydin seek: finding a function in ciliary motility. J Cell Biol 2007;176(4):403–4. DOI: 10.1083/jcb.200701113. PMID: 17296793.

80. Wirschell M., Zhao F., Yang C. et al. Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. Cell Motil Cytoskeleton 2008;65(3):238–48. DOI: 10.1002/cm.20257. PMID: 18157907.

81. Heuser T., Raytchev M., Krell J. et al. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 2009;187(6):921– 33. DOI: 10.1083/jcb.200908067. PMID: 20008568.

82. Darszon A., Beltrán C., Felix R. et al. Ion transport in sperm signaling. Dev Biol 2001;240(1):1–14. DOI: 10.1006/dbio.2001.0387. PMID: 11784043.

83. Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclasessimilarities and differences to transmembrane adenylyl cyclases. Biochim Biophys. Acta 2014;1842(12 Pt B):2535–47. DOI: 10.1016/j.bbadis.2014.08.012. PMID: 25193033.

84. Sunahara R.K., Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002;2(3):168–84. DOI: 10.1124/mi.2.3.168. PMID: 14993377.

85. Hess K.C., Jones B.H., Marquez B. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 2005;9(2):249–59. DOI: 10.1016/j.devcel.2005.06.007. PMID: 16054031.

86. Xie F., Garcia M.A., Carlson A.E. et al. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 2006;296(2):353–62. DOI: 10.1016/j.ydbio.2006.05.038. PMID: 16842770.

87. King S.M., Witman G.B. Multiple sites of phosphorylation within the alpha heavy chain of Chlamydomonas outer arm dynein. J Biol Chem 1994;269(7):5452–7. PMID: 7508939.

88. Yang P., Sale W.S. Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. J Biol Chem 2000;275(25):18905–12. DOI: 10.1074/jbc.M002134200. PMID: 10858448.

89. Gokhale A., Wirschell M., Sale W.S. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. J Cell Biol 2009;186(6):817–24.

90. Wargo M.J., Smith E.F. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci USA 2003;100(1):137–42.

91. Tash J.S., Means A.R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 1983;28(1):75–104.

Andrology and Genital Surgery. 2018; 19: 15-26

A mechanism of sperm cilia beating

Rudneva S. A., Сhernykh V. B.

https://doi.org/10.17650/2070-9781-2018-19-3-15-26

Abstract

The basis of the mechanism of cilia and sperm flagella motility is the sliding of doublets of microtubules relative to each other due to translational movement of dyneins. Previously, external and internal dynein arm were considered similar in structure and functions, however, recent experimental data suggest a significant difference in the composition of subunits, axoneme location, and regulatory mechanisms. And although the understanding of the principles of changes in the activity of the described motor proteins remains incomplete, subtle mechanisms of the functioning of these structures have been established.

References

1. Noji H., Yasuda R., Yoshida M., Kinoshita K. Direct observation of the rotation of F1-ATPase. Nature 1997;386(6622):299–302. DOI: 10.1038/386299a0. PMID:9069291.

2. Kinoshita K. Jr, Yasuda R., Noji H. et al. F1-ATPase: a rotary motor made of a single molecule. Cell 1998;93(1): 21–4. PMID: 9546388.

3. Lindemann C.B., Lesich K.A. The geometric clutch at 20: stripping gears or gaining traction? Reproduction 2015;150(2):R45–53. DOI: 10.1530/REP-14-0498. PMID: 25918437.

4. Zamboni L. Sperm structure and its relevance to infertility. An electron microscopic study. Arch Pathol Lab Med 1992;116(4):325–44. PMID: 1558470.

5. Skowronek M.F., Alciaturi J., Casano- va G. et al. Value of quantitative ultramorphological sperm analysis in infertile men. Reprod Biol 2010;10(2):125–39. PMID: 20668504.

6. Bragina E.E., Bocharova E.N. Kolichestvennoe elektronno-mikroskopicheskoe issledovanie spermatozoidov pri diagnostike muzhskogo besplodiya. Andrologiya i genital'naya khirurgiya 2014;(1):41–50.

7. Kon T., Oyama T., Shimo-Kon R. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 2012;484(7394):345–50. DOI: 10.1038/nature10955. PMID: 22398446.

8. Schmidt H., Gleave E.S., Carter A.P. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 2012;19(5):492–7. DOI: 10.1038/nsmb.2272. PMID: 22426545.

9. Wirschell M., Hendrickson T., Sale W.S. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. Cell Motil Cytoskeleton 2007;64(8):569–79. DOI: 10.1002/cm.20211. PMID: 17549744.

10. Habermacher G., Sale W.S. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 1997;136(1):167–76. PMID: 9008711.

11. Tash J.S, Means A.R. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod 1982;26(4):745–63. PMID: 6282354.

12. Bannai H., Yoshimura M., Takahashi K., Shingyoji C. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. J Cell Sci 2000;113(Pt 5):831–9. PMID: 10671372.

13. Nicastro D., Schwartz C., Pierson J. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 2006;313(5789):944–8. DOI: 10.1126/science.1128618. PMID: 16917055.

14. Nicastro D., Fu X., Heuser T. et al. Cryoelectron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA 2011;108(42):E845–53. DOI: 10.1073/pnas.1106178108. PMID: 21930914.

15. Baccetti B., Afzelius B.A. The biology of the sperm cell. Monogr Dev Biol 1976;(10):1–254. PMID: 1107820.

16. Guichard P., Hachet V., Majubu N. et al. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr Biol 2013;23(17):1620–8. DOI: 10.1016/j.cub.2013.06.061. PMID: 23932403.

17. Stephens R.E., Oleszko-Szuts S., Linck R.W. Retention of ciliary ninefold structure after removal of microtubules. J Cell Sci 1989;92(Pt 3):391–402. PMID: 2592445.

18. Fawcett D.W. The cell. Philadelphia. 2nd edn. Philadelphia: W.B. Saunders Co, 1981. 855 p.

19. Linck R.W., Chemes H., Albertini D.F. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016;33(2):141–56. DOI: 10.1007/s10815-016-0652-1. PMID: 26825807.

20. Mohri H. Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature 1968;217(5133):1053–4. PMID: 4296139.

21. Linck R.W., Amos L.A., Amos W.B. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J Cell Biol 1985;100(1):126–35. PMID: 3880749.

22. Norrander J.M., Perrone C.A., Amos L.A., Linck R.W. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules. J Mol Biol 1996;257(2):385–97. DOI: 10.1006/jmbi.1996.0170. PMID: 8609631.

23. Linck R., Fu X., Lin J. et al. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem 2014;289(25):17427–44. PMID: 24794867. DOI: 10.1074/jbc.M114.568949.

24. Tanaka H., Iguchi N., Toyama Y. et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 2004;24(18):7958–64. DOI: 10.1128/MCB.24.18.7958-7964.2004. PMID: 15340058.

25. Paturle-Lafanechère L., Manier M., Trigault N. et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 1994;107(Pt 6):1529–43. PMID: 7962195.

26. Paturle-Lafanechère L., Eddé B., Denoulet P. et al. Characterization of a major brai1n tubulin variant which cannot be tyrosinated. Biochemistry 1991;30(43):10523–8. PMID: 1931974.

27. Mary J., Redeker V., Le Caer J.P. et al. Posttranslational modifications in the C-terminal tail of axonemal tubulin from sea urchin sperm. J Biol Chem 1996;271(17):9928–33. PMID: 8626629.

28. Eddé B., Rossier J., Le Caer J.P. et al. A combination of posttranslational modifications is responsible for the production of neuronal alpha-tubulin heterogeneity. J Cell Biochem 1991;46(2):134–42. DOI: 10.1002/jcb.240460207. PMID: 1680872.

29. Eddé B., Rossier J., Le Caer J.P. et al. Polyglutamylated alpha-tubulin can enter the tyrosination/detyrosination cycle. Biochemistry 1992;31(2):403–10. PMID: 1370628.

30. Alexander J.E., Hunt D.F., Lee M.K. et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci USA 1991;88(11):4685–9. PMID: 2052551.

31. Audebert S., Koulakoff A., BerwaldNetter Y. et al. Developmental regulation of polyglutamylated alpha- and betatubulin in mouse brain neurons. J Cell Sci 1994;107(Pt 8):2313–22. PMID: 7527057.

32. Kreitzer G., Liao G., Gundersen G.G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesindependent mechanism. Mol Biol Cell 1999;10(4):1105–18. DOI: 10.1091/mbc.10.4.1105. PMID: 10198060.

33. Bré M.H., Redeker V., Quibell M. et al. Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J Cell Sci 1996;109(Pt 4):727–38. PMID: 8718664.

34. Gibbons I.R., Rowe A.J. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 1965;149(3682):424–6. DOI: 10.1126/science.149.3682.424. PMID: 17809406.

35. Cole D.G. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 2003;4(7):435–42. PMID: 12795688.

36. Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: a class of chaperonelike ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999;9(1):27– 43. PMID: 9927482.

37. Gee M.A., Heuser J.E., Vallee R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 1997;390(6660):636–9. DOI: 10.1038/37663. PMID: 9403697.

38. Imamula K., Kon T., Ohkura R., Sutoh K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc Natl Acad Sci USA 2007;104(41):16134–9. DOI: 10.1073/pnas.0702370104. PMID: 17911268.

39. Summers K., Gibbons I.R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci USA 1971;68(12):3092–6. PMID: 5289252.

40. Brokaw C.J. Bend propagation by a sliding filament model for flagella. J Exp Biol 1971;55(2):289–304. PMID: 5114025.

41. Brokaw C.J. Flagellar movement: a sliding filament model. Science 1972;178(4060):455–62. PMID: 4673044.

42. Brokaw C.J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J 1972;12(5):564–86. DOI: 10.1016/S0006-3495(72)86104-6. PMID: 5030565.

43. Dymek E.E., Smith E.F. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity. J Cell Biol 2007;179(3):515–26. DOI: 10.1083/jcb.200703107. PMID: 17967944.

44. Smith E.F., Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton 2004;57(1):8–17. DOI: 10.1002/cm.10155. PMID: 14648553.

45. Afzelius B.A. Electron microscopy of the sperm tail. Results obtained with a new fixative. J Biophys Biochem Cytol 1959;5(2):269–78. PMID: 13654448.

46. Satir P. Switching mechanisms in the control of ciliary motility. In: Modern cell biology. Vol. 4. Ed. by B. Satir. New York: Alan R. Liss, 1985. Pp. 1–46.

47. Satir P., Matsuoka T. Splitting the ciliary axoneme: implications for a “switchpoint” model of dynein arm activity in ciliary motion. Cell Motil Cytoskeleton 1989;14(3):345–58. DOI: 10.1002/cm.970140305. PMID: 2531043.

48. Brokaw C.J. Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella. Exp Cell Res 1961;22:151–62.

49. Cibert C. Are local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the 9 + 2 axoneme. J Theor Biol 2008;253(1):74– 89. DOI: 10.1016/j.jtbi.2008.01.029. PMID: 18405921.

50. Lindemann C.B. A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella. J Theor Biol 1994;168(2):175–89. DOI: 10.1006/jtbi.1994.1097.

51. Gibbons B.H., Gibbons I.R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci 1973;13(2):337–57. PMID: 4760590.

52. Warner F.D., Mitchell D.R. Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol 1978;76(2):261–77. PMID: 10605437.

53. Lindemann C.B., Rikmenspoel R. Sperm flagella: autonomous oscillations of the contractile system. Science 1972;175(4019):337–8. PMID: 4332629.

54. Lindemann C.B. Testing the geometric clutch hypothesis. Biol Cell 2004;96(9):681–90. DOI: 10.1016/j.biolcel.2004.08.001. PMID: 15567522.

55. Warner F.D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol 1974;63(1):35–63. PMID: 4424314.

56. Cibert C. Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function. Cell Motil Cytoskeleton 2003;54(4):296–316. DOI: 10.1002/cm.10100. PMID: 12601692.

57. Witman G.B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 1978;76(3):729–47.

58. Nonaka S., Tanaka Y., Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95(6):829–37. PMID: 9865700.

59. Marszalek J.R., Rui-Lozano P., Roberts E. et al. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 1999;96(9):5043–8. PMID: 10220415.

60. Nakano I., Kobayashi T., Yoshimura M., Shingyoji C. Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J Cell Sci 2003;116(Pt 8):1627–36. PMID: 12640046.

61. Huang B., Ramanis Z., Luck D.J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 1982;28(1):115–24. PMID: 6461414.

62. Porter M.E., Knott J.A., Gardner L.C. et al. Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain. J Cell Biol 1994;126(6):1495–507. PMID: 8089181.

63. Piperno G., Mead K., Shestak W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J Cell Biol 1992;118(6):1455–63. PMID: 1387875.

64. Suarez S.S., Varosi S.M., Dai X. Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc Natl Acad Sci USA 1993;90(10):4660–4. PMID: 8506314.

65. Naito Y., Kaneko H. Reactivated tritonextracted models of Paramecium: modification of ciliary movement by calcium ions. Science 1972;176(4034):523–4. PMID: 5032354.

66. Brokaw C.J. Calcium-induced asymmetrical beating of tritondemembranated sea urchin sperm flagella. J Cell Biol 1979;82:401–11. PMID: 479307.

67. Gibbons B.H., Gibbons I.R. Calciuminduced quiescence in reactivated sea urchin sperm. J Cell Biol 1980;84(1): 13–27. PMID: 7350165.

68. Wakabayashi K., Yagi T., Kamiya R. Ca2+dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system. Cell Motil Cytoskeleton 1997;38(1):22–8. DOI: 10.1002/(SICI)1097-0169(1997)38:1<22::AIDCM3>3.0.CO;2-J. PMID: 9295138.

69. Yang P., Diener D.R., Rosenbaum J.L., Sale W.S. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J Cell Biol 2001;153(6):1315–26. PMID: 11402073.

70. Salisbury J.L., Floyd G.L. Calciuminduced contraction of the rhizoplast of a quadriflagellate green alga. Science 1978;202(4371):975–7. DOI: 10.1126/science.202.4371.975. PMID: 17798796.

71. Salisbury J.L. Contractile flagellar roots: the role of calcium. J Submicrosc Cytol 1983;15:105–10.

72. Okamura N., Tajima Y., Soejima A. et al. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 1985;260(17):9699–705. PMID: 2991260.

73. Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003;79(4):829–43. PMID: 12749418.

74. Ford W.C. Regulation of sperm function by reactive oxygen species. Hum Reprod Update 2004;10(5):387–99. DOI: 10.1093/humupd/dmh034. PMID: 15218008.

75. Brokaw C.J., Luck D.J., Huang B. Analysis of the movement of Chlamydomonas flagella: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol 1982;92(3):722–32. PMID: 7085755.

76. Okada Y., Nonaka S., Tanaka Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 1999;4(4):459–68. PMID: 10549278.

77. Hamasaki T., Barkalow K., Richmond J., Satir P. cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Natl Acad Sci USA 1991;88(18):7918–22. PMID: 1654550.

78. Kotani N., Sakakibara H., Burgess S.A. et al. Mechanical properties of inner-arm dynein-F (dynein I1) studied with in vitro motility assays. Biophys J 2007;93(3):886– 94. DOI: 10.1529/biophysj.106.101964. PMID: 17496036.

79. Smith E.F. Hydin seek: finding a function in ciliary motility. J Cell Biol 2007;176(4):403–4. DOI: 10.1083/jcb.200701113. PMID: 17296793.

80. Wirschell M., Zhao F., Yang C. et al. Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. Cell Motil Cytoskeleton 2008;65(3):238–48. DOI: 10.1002/cm.20257. PMID: 18157907.

81. Heuser T., Raytchev M., Krell J. et al. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 2009;187(6):921– 33. DOI: 10.1083/jcb.200908067. PMID: 20008568.

82. Darszon A., Beltrán C., Felix R. et al. Ion transport in sperm signaling. Dev Biol 2001;240(1):1–14. DOI: 10.1006/dbio.2001.0387. PMID: 11784043.

83. Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclasessimilarities and differences to transmembrane adenylyl cyclases. Biochim Biophys. Acta 2014;1842(12 Pt B):2535–47. DOI: 10.1016/j.bbadis.2014.08.012. PMID: 25193033.

84. Sunahara R.K., Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002;2(3):168–84. DOI: 10.1124/mi.2.3.168. PMID: 14993377.

85. Hess K.C., Jones B.H., Marquez B. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 2005;9(2):249–59. DOI: 10.1016/j.devcel.2005.06.007. PMID: 16054031.

86. Xie F., Garcia M.A., Carlson A.E. et al. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 2006;296(2):353–62. DOI: 10.1016/j.ydbio.2006.05.038. PMID: 16842770.

87. King S.M., Witman G.B. Multiple sites of phosphorylation within the alpha heavy chain of Chlamydomonas outer arm dynein. J Biol Chem 1994;269(7):5452–7. PMID: 7508939.

88. Yang P., Sale W.S. Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. J Biol Chem 2000;275(25):18905–12. DOI: 10.1074/jbc.M002134200. PMID: 10858448.

89. Gokhale A., Wirschell M., Sale W.S. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. J Cell Biol 2009;186(6):817–24.

90. Wargo M.J., Smith E.F. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci USA 2003;100(1):137–42.

91. Tash J.S., Means A.R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 1983;28(1):75–104.