Журналов:     Статей:        

Андрология и генитальная хирургия. 2017; 18: 10-22

НОВЫЕ МОЛЕКУЛЯРНЫЕ ТЕХНОЛОГИИ В ДИАГНОСТИКЕ ГЕНЕТИЧЕСКИХ ПРИЧИН МУЖСКОГО БЕСПЛОДИЯ

Черных В. Б., Яманди Т. А., Сафина Н. Ю.

https://doi.org/10.17650/2070-9781-2017-18-1-10-22

Аннотация

В последние годы стремительное развитие технологий в области молекулярной генетики и цитогенетики привело к значительному расширению возможностей исследования и диагностики различных изменений генома. В статье приведено краткое описание новых молекулярных технологий, результаты их использования в репродуктивной медицине, а также их перспективы в диагностике причин бесплодия у мужчин. 

Список литературы

1. Глинкина Ж.И., Леонов Б.В., Бахарев В.А., Лукин В.А. ПГД врожденных и наследственных заболеваний методом FISH в программе ЭКО и ПЭ. В кн.: Лечение женского и мужского бесплодия. Вспомогательные репродуктивные технологии. Под ред. В.И. Кулакова, Б.В. Леонова, Л.Н. Кузьмичева. М.: Медицинское информационное агентство, 2005. C. 162–197. [Glinkina Zh.I., Leonov B.V., Bakharev V.A., Lukin V.A. PGD of congenial and hereditary disorders using FISH in the IVF and ET program. In: Treatment of male and female infertility. Assisted reproductive technologies. Eds.V. I. Kulakov, B.V. Leonov, L.N. Kuzmichev. Moscow: Meditsinskoe informatsionnoe agentstvo, 2005. P. 162–197. (In Russ.)].

2. Andrology: Male Reproductive Health and Dysfunction. Eds by: E. Nieschlag, H.M. Behre, S. Nieschlag. 3rd ed. Berlin; Heidelberg: Springer Verlag, 2010. 629 p.

3. Matzuk M.M., Lamb D.J. The biology of infertility: Research advances and clinical challenges. Nat Med 2008;14:1197–213.

4. Курило Л.Ф., Андреева М.В., Коломиец О.Л. и др. Генетические синдромы с нарушениями развития органов половой системы. Андрология и генитальная хирургия 2013; (4):17–27. [Kurilo L.F., Andreeva M.V., Kolomiets O.L. et al. Genetically caused congenital anomalies of reproductive system. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2013; (4):17–27. (In Russ.)].

5. Курило Л.Ф. Аномалии развития половой системы вследствие генных мутаций (Обзор литературы). Клиническая и экспериментальная морфология 2014; (2):58–65. [Kurilo L.F. Developmental anomalies of the reproductive system caused by gene mutations (literature review). Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2014;(2): 58–65. (In Russ.)].

6. Курило Л.Ф. Хромосомные заболевания органов половой системы. Клиническая и экспериментальная морфология 2015; (1):48–59. [Kurilo L.F. Chromosomal diseases of the reproductive organs. Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2015;(1):48–59. (In Russ.)].

7. Черных В.Б. Генетические факторы мужского бесплодия. Материалы. Всерос. науч.-практ. конф. «Молекуляр ные методы диагностики моногенных заболеваний: возможности и перспективы». Медицинская генетика 2006;2 (прилож.): 8–14. [Chernykh V.B. Genetic factors of male infertility. Proceedings of the All-Russian Scientific and Practical Conference “Molecular methods of diagnosis of monogenic disorders: Capabilities and possibilities.” Meditsinskaya genetika = Medical Genetics 2006;2 (appendix):8–14. (In Russ.)].

8. De Braekeleer M., Dao T.N. Cytogenetic studies in male infertility: a review. Hum. Reprod 1991;6(2):245–50.

9. Van Assche E., Bonduelle M., Tournaye H. et al. Cytogenetics of infertile men. Hum Reprod 1996;11(Supp l) 4:1–24.

10. Gardner R.J.M., Sutherland G.R., Shaffer L.G. Chromosome abnormalities and genetic counseling. 4th ed. New York: Oxford University Press, 2012. 634 p.

11. McLachlan R.I., O’Bryan M.K. State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 2010;95(3):1013–24.

12. Krausz C., Escamilla A.R., Chianese C. Genetics of male infertility: from research to clinic. Reproduction 2015;150(5):159–74.

13. Carrell D.T., Aston K.I., Oliva R. et al. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2016;363(1):295–312.

14. Суспицын Е.Н., Соколенко А.П. Применение молекулярных технологий нового поколения в медицинской генетике: Научно-образовательный курс для студентов медицинских вузов и врачей. СПб., 2013. 22 с. [Suspitsyn E.N., Sokolenko A.P. Use of next-generation molecular technologies in medical genetics: Educational course for medical universities and doctors. Saint-Petersburg, 2013. 22 p. (In Russ.)].

15. Абилев С.К., Глазер В.М. Мутагенез с основами генотоксикологии: Учеб. пос. М.; СПб.: Нестор-История, 2015. 304 с. [Abilev S.K., Glazer V.M. Mutagenesis with the basics of genotoxicology: Textbook. Moscow; Saint-Petersburg: Nestor-Istoriya, 2015. 304 p. (In Russ.)].

16. Ledig S., Röpke A., Wieacker P. Copy number variants in premature ovarian failure and ovarian dysgenesis. Sex Dev 2010;4(4–5):225–32.

17. Rajcan-Separovic E. Chromosome microarrays in human reproduction. Hum Reprod Update 2012;18(5):555–67.

18. Rajcan-Separovic E., Diego-Alvarez D., Robinson W.P. et al. Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss. Hum Reprod 2010;25(11):2913–22.

19. Bagheri H., Mercier E., Qiao Y. et al. Genomic characteristics of miscarriage copy number variants. Mol Hum Reprod 2015;21(8):655–61.

20. Barseghyan H., Délot E., Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res 2015;47(5):312–20.

21. Eggers S., DeBoer K.D., van den Bergen J. et al. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fert Steril 2015;103(1):214–9.

22. Lee C.H., Wu C.C., Wu Y.N., Chiang H.S. Gene copy number variations in Asian patients with congenital bilateral absence of the vas deferens. Hum Reprod 2009;24(3):748–55.

23. Krausz C., Chianese C., Giachini C. et al. The Y chromosome-linked copy number variations and male fertility. J Endocrinol Invest 2011;34(5):376–82.

24. Tütelmann F., Simoni M., Kliesch S. et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cellonly syndrome. PLoS One 2011;6(4):e19426.

25. Krausz C., Giachini C., Lo Giacco D. et al. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 2012;7(10):e44887.

26. Chianese C., Gunning A.C., Giachini C. et al. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS One 2014;9(6):e97746.

27. Lo Giacco D., Chianese C., SánchezCurbelo J. et al. Clinical relevance of Ylinked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Europ J Hum Genet 2014;22(6):754–61.

28. Dong Y., Pan Y., Wang R. et al. Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res 2015;14(4):16041–9.

29. Ребриков Д.В., Коростин Д.О., Шубина Е.С., Ильинский В.В. NGS: высокопроизводительное секвенирование. Под общ. ред. Д.В. Ребрикова. 2-е изд. М.: Бином. Лаборатория знаний, 2015. 232 с. [Rebrikov D.V., Korostin D.O., Shubina E.S., Ilyinskiy V.V. NGS:Highperformance sequencing. Ed. D.V. Rebrikov. 2nd edition. Moscow: Binom. Laboratoriya znaniy, 2015. 232 p. (In Russ.)].

30. Worthey E.A. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. Curr Protoc Hum Genet 2013;79:Unit 9.24.

31. Shen Y., Yan Y., Liu Y. et al. A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion. Hum Mol Genet 2013;22(8):1679–95.

32. Aston K.I., Carrell D.T. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 2009;30(6):711–25.

33. Aston K.I., Krausz C., Laface I. et al. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 2010;25(6):1383–97.

34. Yang F., Eckardt S., Leu N.A. et al. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 2008;180(4):673–9.

35. Wang W., Lu N., Xia Y. et al. FAS and FASLG polymorphisms and susceptibility to idiopathic azoospermia or severe oligozoospermia. Reprod Biomed Online 2009;18(1):141–7.

36. Xu M., Qin Y., Qu J. et al. Evaluation of five candidate genes from GWAS for association with oligozoospermia in a Han Chinese population. PLoS One 2013;8(11):e80374.

37. Sato Y., Tajima A., Tsunematsu K. et al. An association study of four candidate loci for human male fertility traits with male infertility. Hum Reprod 2015;30(6):1510–4.

38. Хаят С.Ш. Ультраструктурные и генетические основы двигательной активности жгутика сперматозоида. Андрология и генитальная хирургия 2012; (1):59–61. [Khayat S.Sh. Ultrastructural and genetic basics of spermatozoon flagellum mobility. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2012; (1):59–61. (In Russ.)].

39. Lu C., Xu M., Wang R. et al. A genomewide association study of mitochondrial DNA in Chinese men identifies two risk single nucleotide substitutions for idiopathic oligoasthenospermia. Mitochondrion 2015;24:87–92.

40. Arboleda V.A., Lee H., Sanchez F.J. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin Genet 2013;83(1):35–43.

41. Baxter R.M., Arboleda V.A., Lee H. et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab 2015;100(2):E333–44.

42. Quaynor S.D., Bosley M.E., Duckworth C.G. et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016;437:86–96.

43. Marshall C.R., Scherer S.W., Zariwala M.A. et al. Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3 (Bethesda) 2015;5(8):1775–81.

Andrology and Genital Surgery. 2017; 18: 10-22

NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

Chernykh V. B., Yamandi T. A., Safina N. Yu.

https://doi.org/10.17650/2070-9781-2017-18-1-10-22

Abstract

In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

References

1. Glinkina Zh.I., Leonov B.V., Bakharev V.A., Lukin V.A. PGD vrozhdennykh i nasledstvennykh zabolevanii metodom FISH v programme EKO i PE. V kn.: Lechenie zhenskogo i muzhskogo besplodiya. Vspomogatel'nye reproduktivnye tekhnologii. Pod red. V.I. Kulakova, B.V. Leonova, L.N. Kuz'micheva. M.: Meditsinskoe informatsionnoe agentstvo, 2005. C. 162–197. [Glinkina Zh.I., Leonov B.V., Bakharev V.A., Lukin V.A. PGD of congenial and hereditary disorders using FISH in the IVF and ET program. In: Treatment of male and female infertility. Assisted reproductive technologies. Eds.V. I. Kulakov, B.V. Leonov, L.N. Kuzmichev. Moscow: Meditsinskoe informatsionnoe agentstvo, 2005. P. 162–197. (In Russ.)].

2. Andrology: Male Reproductive Health and Dysfunction. Eds by: E. Nieschlag, H.M. Behre, S. Nieschlag. 3rd ed. Berlin; Heidelberg: Springer Verlag, 2010. 629 p.

3. Matzuk M.M., Lamb D.J. The biology of infertility: Research advances and clinical challenges. Nat Med 2008;14:1197–213.

4. Kurilo L.F., Andreeva M.V., Kolomiets O.L. i dr. Geneticheskie sindromy s narusheniyami razvitiya organov polovoi sistemy. Andrologiya i genital'naya khirurgiya 2013; (4):17–27. [Kurilo L.F., Andreeva M.V., Kolomiets O.L. et al. Genetically caused congenital anomalies of reproductive system. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2013; (4):17–27. (In Russ.)].

5. Kurilo L.F. Anomalii razvitiya polovoi sistemy vsledstvie gennykh mutatsii (Obzor literatury). Klinicheskaya i eksperimental'naya morfologiya 2014; (2):58–65. [Kurilo L.F. Developmental anomalies of the reproductive system caused by gene mutations (literature review). Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2014;(2): 58–65. (In Russ.)].

6. Kurilo L.F. Khromosomnye zabolevaniya organov polovoi sistemy. Klinicheskaya i eksperimental'naya morfologiya 2015; (1):48–59. [Kurilo L.F. Chromosomal diseases of the reproductive organs. Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2015;(1):48–59. (In Russ.)].

7. Chernykh V.B. Geneticheskie faktory muzhskogo besplodiya. Materialy. Vseros. nauch.-prakt. konf. «Molekulyar nye metody diagnostiki monogennykh zabolevanii: vozmozhnosti i perspektivy». Meditsinskaya genetika 2006;2 (prilozh.): 8–14. [Chernykh V.B. Genetic factors of male infertility. Proceedings of the All-Russian Scientific and Practical Conference “Molecular methods of diagnosis of monogenic disorders: Capabilities and possibilities.” Meditsinskaya genetika = Medical Genetics 2006;2 (appendix):8–14. (In Russ.)].

8. De Braekeleer M., Dao T.N. Cytogenetic studies in male infertility: a review. Hum. Reprod 1991;6(2):245–50.

9. Van Assche E., Bonduelle M., Tournaye H. et al. Cytogenetics of infertile men. Hum Reprod 1996;11(Supp l) 4:1–24.

10. Gardner R.J.M., Sutherland G.R., Shaffer L.G. Chromosome abnormalities and genetic counseling. 4th ed. New York: Oxford University Press, 2012. 634 p.

11. McLachlan R.I., O’Bryan M.K. State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 2010;95(3):1013–24.

12. Krausz C., Escamilla A.R., Chianese C. Genetics of male infertility: from research to clinic. Reproduction 2015;150(5):159–74.

13. Carrell D.T., Aston K.I., Oliva R. et al. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2016;363(1):295–312.

14. Suspitsyn E.N., Sokolenko A.P. Primenenie molekulyarnykh tekhnologii novogo pokoleniya v meditsinskoi genetike: Nauchno-obrazovatel'nyi kurs dlya studentov meditsinskikh vuzov i vrachei. SPb., 2013. 22 s. [Suspitsyn E.N., Sokolenko A.P. Use of next-generation molecular technologies in medical genetics: Educational course for medical universities and doctors. Saint-Petersburg, 2013. 22 p. (In Russ.)].

15. Abilev S.K., Glazer V.M. Mutagenez s osnovami genotoksikologii: Ucheb. pos. M.; SPb.: Nestor-Istoriya, 2015. 304 s. [Abilev S.K., Glazer V.M. Mutagenesis with the basics of genotoxicology: Textbook. Moscow; Saint-Petersburg: Nestor-Istoriya, 2015. 304 p. (In Russ.)].

16. Ledig S., Röpke A., Wieacker P. Copy number variants in premature ovarian failure and ovarian dysgenesis. Sex Dev 2010;4(4–5):225–32.

17. Rajcan-Separovic E. Chromosome microarrays in human reproduction. Hum Reprod Update 2012;18(5):555–67.

18. Rajcan-Separovic E., Diego-Alvarez D., Robinson W.P. et al. Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss. Hum Reprod 2010;25(11):2913–22.

19. Bagheri H., Mercier E., Qiao Y. et al. Genomic characteristics of miscarriage copy number variants. Mol Hum Reprod 2015;21(8):655–61.

20. Barseghyan H., Délot E., Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res 2015;47(5):312–20.

21. Eggers S., DeBoer K.D., van den Bergen J. et al. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fert Steril 2015;103(1):214–9.

22. Lee C.H., Wu C.C., Wu Y.N., Chiang H.S. Gene copy number variations in Asian patients with congenital bilateral absence of the vas deferens. Hum Reprod 2009;24(3):748–55.

23. Krausz C., Chianese C., Giachini C. et al. The Y chromosome-linked copy number variations and male fertility. J Endocrinol Invest 2011;34(5):376–82.

24. Tütelmann F., Simoni M., Kliesch S. et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cellonly syndrome. PLoS One 2011;6(4):e19426.

25. Krausz C., Giachini C., Lo Giacco D. et al. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 2012;7(10):e44887.

26. Chianese C., Gunning A.C., Giachini C. et al. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS One 2014;9(6):e97746.

27. Lo Giacco D., Chianese C., SánchezCurbelo J. et al. Clinical relevance of Ylinked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Europ J Hum Genet 2014;22(6):754–61.

28. Dong Y., Pan Y., Wang R. et al. Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res 2015;14(4):16041–9.

29. Rebrikov D.V., Korostin D.O., Shubina E.S., Il'inskii V.V. NGS: vysokoproizvoditel'noe sekvenirovanie. Pod obshch. red. D.V. Rebrikova. 2-e izd. M.: Binom. Laboratoriya znanii, 2015. 232 s. [Rebrikov D.V., Korostin D.O., Shubina E.S., Ilyinskiy V.V. NGS:Highperformance sequencing. Ed. D.V. Rebrikov. 2nd edition. Moscow: Binom. Laboratoriya znaniy, 2015. 232 p. (In Russ.)].

30. Worthey E.A. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. Curr Protoc Hum Genet 2013;79:Unit 9.24.

31. Shen Y., Yan Y., Liu Y. et al. A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion. Hum Mol Genet 2013;22(8):1679–95.

32. Aston K.I., Carrell D.T. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 2009;30(6):711–25.

33. Aston K.I., Krausz C., Laface I. et al. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 2010;25(6):1383–97.

34. Yang F., Eckardt S., Leu N.A. et al. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 2008;180(4):673–9.

35. Wang W., Lu N., Xia Y. et al. FAS and FASLG polymorphisms and susceptibility to idiopathic azoospermia or severe oligozoospermia. Reprod Biomed Online 2009;18(1):141–7.

36. Xu M., Qin Y., Qu J. et al. Evaluation of five candidate genes from GWAS for association with oligozoospermia in a Han Chinese population. PLoS One 2013;8(11):e80374.

37. Sato Y., Tajima A., Tsunematsu K. et al. An association study of four candidate loci for human male fertility traits with male infertility. Hum Reprod 2015;30(6):1510–4.

38. Khayat S.Sh. Ul'trastrukturnye i geneticheskie osnovy dvigatel'noi aktivnosti zhgutika spermatozoida. Andrologiya i genital'naya khirurgiya 2012; (1):59–61. [Khayat S.Sh. Ultrastructural and genetic basics of spermatozoon flagellum mobility. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2012; (1):59–61. (In Russ.)].

39. Lu C., Xu M., Wang R. et al. A genomewide association study of mitochondrial DNA in Chinese men identifies two risk single nucleotide substitutions for idiopathic oligoasthenospermia. Mitochondrion 2015;24:87–92.

40. Arboleda V.A., Lee H., Sanchez F.J. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin Genet 2013;83(1):35–43.

41. Baxter R.M., Arboleda V.A., Lee H. et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab 2015;100(2):E333–44.

42. Quaynor S.D., Bosley M.E., Duckworth C.G. et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016;437:86–96.

43. Marshall C.R., Scherer S.W., Zariwala M.A. et al. Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3 (Bethesda) 2015;5(8):1775–81.