Журналов:     Статей:        

Андрология и генитальная хирургия. 2016; 17: 17-20

Перспективы использования сперматогониальных стволовых клеток при изучении механизмов сперматогенеза и лечении мужского бесплодия

Полякова М. В.

https://doi.org/10.17650/2070-9781-2016-17-4-17-20

Аннотация

Половые стволовые клетки определяются способностью передачи генетической информации следующему поколению посредством оплодотворения. Ключ к непрерывному производству сперматозоидов – сперматогониальные стволовые клетки (ССК). Лечение злокачественных заболеваний (химио- или лучевая терапия) может привести к серьезному повреждению мужской репродуктивной функции. Недавние открытия в исследованиях по изучению сперматогенной системы млекопитающих позволили расширить знания о клеточных и молекулярных механизмах дифференцировки сперматогониев в зрелые гаметы. Однако в настоящее время природа сперматогенеза человека практически неизвестна из-за отсутствия соответствующей экспериментальной модели. Создание метода культивирования ССК человека в ближайшем будущем будет содействовать дальнейшему пониманию механизма сперматогенеза и его патогенеза, что может привести к более результативным показателям при применении вспомогательных репродуктивных технологий как в лечении наиболее сложных форм мужского бесплодия, так и в его профилактике. В обзоре проанализированы результаты исследований, изучающих возможность применения клеточных технологий в репродуктивной медицине для восстановления сперматогенеза человека. Рядом авторов показано, что применение криоконсервации не только спермы, но и ткани яичек, содержащей ССК, аутотрансплантация ССК, создание органных культур в целях получения сперматозоидов in vitro в будущем могут стать действенными способами сохранения фертильности, особенно у пациентов препубертатного возраста. Однако полученные результаты неоднозначны и требуют дальнейших исследований.

Список литературы

1. Райцина С. С. Сперматогенез и структурные основы его регуляции. М.: Наука, 1985. 207 с. [Raytsina S. S. The spermatogene sis and structural basis of its regulation. Moscow: Nauka, 1985. 207 p. (In Russ.)]..

2. Сlermont Y. The cycle of the seminiferous epithelium in man. Am J Anat 1963;112:35–51.

3. Tegelenbosch R. A., de Rooij D. G. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 1993;290:193–200.

4. Brinster R. L., Zimmermann J. W. Spermat ogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994;91(24):11298–302.

5. Ogawa T., Ohmura M., Tamura Y. et al. Derivation and morphological characterization of mouse spermatogonial stem cell lines. Arch Histol Cytol 2004;67(4):297–306.

6. Shinohara T., Inoue K., Ogonuki N. et al. Birth of offspring following transplantation of cryopreserved immature testicular pieces and in vitro microinsemination. Hum Reprod 2002;17(12):3039–45.

7. Dobrinski I., Avarbock M. R., Brinster R. L. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 1999;61(5):1331–9.

8. Meng X., Lindahl M., Hyvonen M. E. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000;287(5457):1489–93.

9. Hamra F. K., Chapman K. M., Nguyen D. M. et al. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci USA 2005;102(48):17430–5.

10. Kubota H., Wu X., Goodyear S. M. et al. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 2011;25(8):2604–14.

11. Kanatsu-Shinohara M., Muneto T., Lee J. et al. Long-term culture of male germline stem cells from hamster testes. Biol Reprod 2008;78(4):611–7.

12. Полякова М. В. Влияние условий культивирования на поддержание сперматогониев хряка in vitro. Автореф. дис…. канд. биол. наук. М., 2013. 27 c. [Poliakova M. V. Influence of culture conditions on the maintenance of boar spermatogonia in vitro. Abstract of the thesis … of the candidate of biological. Moscow, 2013. 27 p. (In Russ.)].

13. Aponte P. M., Soda T., Teerds K. J. et al. Propagation of bovine spermatogonial stem cells in vitro. Reproduction 2008;136(5):543–57. DOI: 10.1530/REP-07-0419.

14. He Z., Kokkinaki M., Jiang J. et al. Isolation, characterization, and culture of human spermatogonia. Biol Reprod 2010;82(2):363–72.

15. Lass A., Akagbosu F., Brinsden P. Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod 2001;7(4):370–7.

16. Chung K., Irani J., Knee G. et al. Sperm cryopreservation for male patients with cancer: an epidemiological analysis at the University of Pennsylvania. Eur J Obstet Gynecol Reprod Biol 2004; 113 Suppl 1:S7–11.

17. Schlatt S., Foppiani L., Rolf C. et al. Germ cell transplantation into X-irradiated monkey testes. Hum Reprod 2002;17(1): 55–62.

18. Brook P. F., Radford J. A., Shalet S. M. Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil Steril 2001;75:269–74.

19. Radford J., Shalet S., Lieberman B. Fertility after treatment for cancer. Questions remain over ways of preserving ovarian and testicular tissue. BMJ 1999;319(7215):935–6.

20. Radford J. Restoration of fertility after treatment for cancer. Horm Res 2003; 59 Suppl 1:21–3.

21. Fujita K., Ohta H., Tsujimura A. et al. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest 2005;115(7):1855–61.

22. Tsujimura A., Matsumiya K., Takao T. et al. Clinical analysis of patients with azoospermia factor deletions by microdissection testicular sperm extraction. Int J Androl 2004;27(2):76– 81.

23. Choi J. M., Chung P., Veeck L. et al. AZF microdeletions of the Y chromosome and in vitro fertilization outcome. Fertil Steril 2004;81(2):337–41.

24. Sakamoto H., Oohta M., Inoue K. et al. Testicular sperm extraction in patients with persistent azoospermia after chemotherapy for testicular germ cell tumor. Int J Urol 2007;14:167–70.

25. Meseguer M., Garrido N., Remohi J. et al. Testicular sperm extraction(TESE) and ICSI in patients with permanent azoospermia after chemotherapy. Hum Reprod 2003;18(6):1281– 5.

26. Damani M. N., Master V., Meng M. V. et al. Postchemotherapy ejaculatory azoospermia: fatherhood with sperm from testis tissue with intracytoplasmic sperm injection. J Clin Oncol 2002;20(4):930–6.

27. Shiraishi K., Ohmi C., Shimabukuro T., Matsuyama H. Human chorionic gonadotrophin treatment prior to microdissection testicular sperm extraction in non-obstructive azoospermia. Hum Reprod 2012;27(2):331–9. DOI: 10.1093/humrep/der404.

28. Shiraishi K., Matsuyama H. Local expression of epidermal growth factor-like factors in human testis and its role in spermatogenesis. J Androl 2012;33(1):66–73. DOI: 10.2164/jandrol. 110.011981.

29. Sato T., Katagiri K., Gohbara A. et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011;471(7339):504–7. DOI: 10.1038/nature09850.

30. Sato T., Katagiri K., Yokonishi T. et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun 2011;2:472. DOI: 10.1038/ncomms1478.

Andrology and Genital Surgery. 2016; 17: 17-20

Perspectivesof spermatogonial stem cellsuse for investigation of spermatogenesis mechanisms and for treatment of male infertility

Polyakova M. V.

https://doi.org/10.17650/2070-9781-2016-17-4-17-20

Abstract

Germ stem cells have the ability to transfer genetic information to the next generation through fertilization. The key to continuous production of sperm cells – spermatogonial stem cells (SSC). Treatment of malignant diseases, chemotherapy or radiation therapy, can cause serious damage to male reproductive function. Recent discoveries in studies of the mammalian spermatogenic system had expanded the knowledge about the cellular and molecular mechanisms of differentiation of spermatogonia into mature gametes. Currently, however, the nature of the human spermatogenesis almost unknown due to the lack of appropriate experimental models. Create a method of culture human SSC in the near future will contribute to the further understanding of the mechanism of spermatogenesis and its pathogenesis, which may lead to more effective indicators for the use of assisted reproductive technologies in treating the most severe forms of male infertility, and its prevention. The review analyzed the results of studies the possibility of using cellular technologies in reproductive medicine to restore human spermatogenesis. A number of authors have shown that the use of cryopreservation not only sperm, but also tissues of testicles that contains SSC, auto-transplantation of SSC, the establishment of organ cultures with the aim of obtaining sperm in vitro may in future be an effective method of fertility preservation, especially in prepubertal patients. However, the results are ambiguous and need further researches.

References

1. Raitsina S. S. Spermatogenez i strukturnye osnovy ego regulyatsii. M.: Nauka, 1985. 207 s. [Raytsina S. S. The spermatogene sis and structural basis of its regulation. Moscow: Nauka, 1985. 207 p. (In Russ.)]..

2. Slermont Y. The cycle of the seminiferous epithelium in man. Am J Anat 1963;112:35–51.

3. Tegelenbosch R. A., de Rooij D. G. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 1993;290:193–200.

4. Brinster R. L., Zimmermann J. W. Spermat ogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994;91(24):11298–302.

5. Ogawa T., Ohmura M., Tamura Y. et al. Derivation and morphological characterization of mouse spermatogonial stem cell lines. Arch Histol Cytol 2004;67(4):297–306.

6. Shinohara T., Inoue K., Ogonuki N. et al. Birth of offspring following transplantation of cryopreserved immature testicular pieces and in vitro microinsemination. Hum Reprod 2002;17(12):3039–45.

7. Dobrinski I., Avarbock M. R., Brinster R. L. Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 1999;61(5):1331–9.

8. Meng X., Lindahl M., Hyvonen M. E. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000;287(5457):1489–93.

9. Hamra F. K., Chapman K. M., Nguyen D. M. et al. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci USA 2005;102(48):17430–5.

10. Kubota H., Wu X., Goodyear S. M. et al. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 2011;25(8):2604–14.

11. Kanatsu-Shinohara M., Muneto T., Lee J. et al. Long-term culture of male germline stem cells from hamster testes. Biol Reprod 2008;78(4):611–7.

12. Polyakova M. V. Vliyanie uslovii kul'tivirovaniya na podderzhanie spermatogoniev khryaka in vitro. Avtoref. dis…. kand. biol. nauk. M., 2013. 27 c. [Poliakova M. V. Influence of culture conditions on the maintenance of boar spermatogonia in vitro. Abstract of the thesis … of the candidate of biological. Moscow, 2013. 27 p. (In Russ.)].

13. Aponte P. M., Soda T., Teerds K. J. et al. Propagation of bovine spermatogonial stem cells in vitro. Reproduction 2008;136(5):543–57. DOI: 10.1530/REP-07-0419.

14. He Z., Kokkinaki M., Jiang J. et al. Isolation, characterization, and culture of human spermatogonia. Biol Reprod 2010;82(2):363–72.

15. Lass A., Akagbosu F., Brinsden P. Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod 2001;7(4):370–7.

16. Chung K., Irani J., Knee G. et al. Sperm cryopreservation for male patients with cancer: an epidemiological analysis at the University of Pennsylvania. Eur J Obstet Gynecol Reprod Biol 2004; 113 Suppl 1:S7–11.

17. Schlatt S., Foppiani L., Rolf C. et al. Germ cell transplantation into X-irradiated monkey testes. Hum Reprod 2002;17(1): 55–62.

18. Brook P. F., Radford J. A., Shalet S. M. Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil Steril 2001;75:269–74.

19. Radford J., Shalet S., Lieberman B. Fertility after treatment for cancer. Questions remain over ways of preserving ovarian and testicular tissue. BMJ 1999;319(7215):935–6.

20. Radford J. Restoration of fertility after treatment for cancer. Horm Res 2003; 59 Suppl 1:21–3.

21. Fujita K., Ohta H., Tsujimura A. et al. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest 2005;115(7):1855–61.

22. Tsujimura A., Matsumiya K., Takao T. et al. Clinical analysis of patients with azoospermia factor deletions by microdissection testicular sperm extraction. Int J Androl 2004;27(2):76– 81.

23. Choi J. M., Chung P., Veeck L. et al. AZF microdeletions of the Y chromosome and in vitro fertilization outcome. Fertil Steril 2004;81(2):337–41.

24. Sakamoto H., Oohta M., Inoue K. et al. Testicular sperm extraction in patients with persistent azoospermia after chemotherapy for testicular germ cell tumor. Int J Urol 2007;14:167–70.

25. Meseguer M., Garrido N., Remohi J. et al. Testicular sperm extraction(TESE) and ICSI in patients with permanent azoospermia after chemotherapy. Hum Reprod 2003;18(6):1281– 5.

26. Damani M. N., Master V., Meng M. V. et al. Postchemotherapy ejaculatory azoospermia: fatherhood with sperm from testis tissue with intracytoplasmic sperm injection. J Clin Oncol 2002;20(4):930–6.

27. Shiraishi K., Ohmi C., Shimabukuro T., Matsuyama H. Human chorionic gonadotrophin treatment prior to microdissection testicular sperm extraction in non-obstructive azoospermia. Hum Reprod 2012;27(2):331–9. DOI: 10.1093/humrep/der404.

28. Shiraishi K., Matsuyama H. Local expression of epidermal growth factor-like factors in human testis and its role in spermatogenesis. J Androl 2012;33(1):66–73. DOI: 10.2164/jandrol. 110.011981.

29. Sato T., Katagiri K., Gohbara A. et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011;471(7339):504–7. DOI: 10.1038/nature09850.

30. Sato T., Katagiri K., Yokonishi T. et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun 2011;2:472. DOI: 10.1038/ncomms1478.