Аэрокосмический научный журнал. 2015; 1: 26-35
Анализ возможности увеличения дальности стрельбы перспективных управляемых ракет для отечественных реактивных систем залпового огня
Зубов В. Н., Джеванширов П. Ф.
Аннотация
Список литературы
1. GMLRS. Combat Proven - Always Ready to Fire. Lockheed Martin Corporation: website. Режим доступа: http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/pc/guided-unitary-mlrs-rocket/mfc-gu-mlrs-rocket-pc.pdf (дата обращения 15.06.2015)
2. Lockheed Martin’s GMLRS+ Completes Successful Test Flight of Long-Range Motor, August 9, 2011. Lockheed Martin Corporation: website. Режим доступа: http://www.lockheedmartin.com/us/news/press-releases/2011/august/LockheedMartinsGMLRSCompl.html (дата обращения 15.06.2015)
3. -миллиметровый реактивный снаряд 9М528 с осколочно-фугасной головной частью. ОАО «НПО «Сплав»: сайт. Режим доступа: http://www.splav.org/ru/arms/smerch/m528.asp (дата обращения 15.06.2015)
4. Абрамович Г. Н. Прикладная газовая динамика. Ч. 1. 5-е изд. М.: Наука, 1991. 600 с
5. Мазинг Г.Ю., Никитина И.Е. Теория прямоточного воздушно-реактивного двигателя. Ч. 1. М.: Изд-во МГТУ им Н.Э.Баумана, 2006. 68 с
6. Акимов В.М., Бакулев В.И., Курзинер Р.И., Поляков В.В., Сосунов В.А., Шляхтенко С.М. Теория и расчёт воздушно-реактивных двигателей: учебник для вузов / под ред. С.М. Шляхтенко. 2-е изд., перераб. и доп. М.: Машиностроение, 1987. 568 с
7. Мазинг Г.Ю., Никитина И.Е. Теория прямоточного воздушно-реактивного двигателя. Ч. 2. М.: Изд-во МГТУ им Н.Э. Баумана, 2011. 83 с
Aerospace Scientific Journal. 2015; 1: 26-35
Ramjet Application Possibilities for Increasing Fire Range of the Multiple Launch Rocket Systems Ammunition
Zubov V. N., Dzhevanshirov P. F.
Abstract
The article considers a possibility to increase a flying range of the perspective rockets equipped with the control unit with aerodynamic controllers for the multiple launch rocket systems “Smerch”.
To increase a flying range and reduce a starting mass of the rocket, the paper studies a possibility to replace the single-mode rocket engine used in the solid-fuel rocket motor for the direct-flow propulsion jet engine (DFPJE) with not head sector air intakes. The DFPJE is implemented according to the classical scheme with a fuel charged in the combustion chamber. A separated solid propellant starting accelerator provides the rocket acceleration to reach a speed necessary for the DFPJE to run.
When designing the DFPJE a proper choice of not head air intake parameters is one of the most difficult points. For this purpose a COSMOS Flow Simulation software package and analytical dependences were used to define the following: a boundary layer thickness where an air intake is set, maximum permissible and appropriate angles of attack and deviation angles of controllers at the section where the DFPJE works, and some other parameters as well.
Calculation of DFPJE characteristics consisted in determining parameters of an air-gas path of the propulsion system, geometrical sizes of the pipeline flow area, sizes of a fuel charge, and dependence of the propulsion system impulse on the flight height and speed. Calculations were performed both in thermodynamic statement of problem and in using software package of COSMOS Flow Simulation.
As a result of calculations and design engineering activities the air intake profile is created and mass-dimensional characteristics of DFPJE are defined. Besides, calculations of the starting solid fuel accelerator were carried out. Further design allowed us to create the rocket shape, estimate its mass-dimensional characteristics, and perform ballistic calculations, which proved that achieving a range of 120 km for the rocket is possible.
Thus, with restrictions imposed by the control unit, application of DFPJE allows us to increase a flying range of the rocket more than by 30% in comparison with the existing domestic samples.
References
1. GMLRS. Combat Proven - Always Ready to Fire. Lockheed Martin Corporation: website. Rezhim dostupa: http://www.lockheedmartin.com/content/dam/lockheed/data/mfc/pc/guided-unitary-mlrs-rocket/mfc-gu-mlrs-rocket-pc.pdf (data obrashcheniya 15.06.2015)
2. Lockheed Martin’s GMLRS+ Completes Successful Test Flight of Long-Range Motor, August 9, 2011. Lockheed Martin Corporation: website. Rezhim dostupa: http://www.lockheedmartin.com/us/news/press-releases/2011/august/LockheedMartinsGMLRSCompl.html (data obrashcheniya 15.06.2015)
3. -millimetrovyi reaktivnyi snaryad 9M528 s oskolochno-fugasnoi golovnoi chast'yu. OAO «NPO «Splav»: sait. Rezhim dostupa: http://www.splav.org/ru/arms/smerch/m528.asp (data obrashcheniya 15.06.2015)
4. Abramovich G. N. Prikladnaya gazovaya dinamika. Ch. 1. 5-e izd. M.: Nauka, 1991. 600 s
5. Mazing G.Yu., Nikitina I.E. Teoriya pryamotochnogo vozdushno-reaktivnogo dvigatelya. Ch. 1. M.: Izd-vo MGTU im N.E.Baumana, 2006. 68 s
6. Akimov V.M., Bakulev V.I., Kurziner R.I., Polyakov V.V., Sosunov V.A., Shlyakhtenko S.M. Teoriya i raschet vozdushno-reaktivnykh dvigatelei: uchebnik dlya vuzov / pod red. S.M. Shlyakhtenko. 2-e izd., pererab. i dop. M.: Mashinostroenie, 1987. 568 s
7. Mazing G.Yu., Nikitina I.E. Teoriya pryamotochnogo vozdushno-reaktivnogo dvigatelya. Ch. 2. M.: Izd-vo MGTU im N.E. Baumana, 2011. 83 s
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32